Seminar第1665期 Quadratic convergence to the optimal solution of second¬ order conic optimization

创建时间:  2018/06/12  谭福平   浏览次数:   返回

报告主题:Quadratic convergence to the optimal solution of second order conic optimization
报告人:Tamás Terlaky 教授 (Lehigh University, USA)
报告时间:2018年6月14日(周四)14:00
报告地点:校本部G507
邀请人:白延琴教授

报告摘要:In this paper, we establish the quadratic convergence of Newton's method to the unique maximally complementary optimal solution of second-order conic optimization, when strict complementarity fails. Only very few approaches have been proposed to remedy the failure of strict complementarity, mostly based on nonsmooth analysis of the optimality conditions. Our local convergence result depends on the optimal partition of the problem, which can be identifi ed from a bounded sequence of interior solutions. We provide a theoretical complexity bound for identifying the quadratic convergence region of Newton's method from the trajectory of central solutions.


欢迎教师、学生参加 !

上一条:Seminar第1664期 A new method for solving the homogeneous feasibility problem

下一条:Seminar第1663期 Edge Based Joint Multi-energy CT Image Reconstruction

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们