Seminar第2968讲 动态模态分解与算子学习模拟非平衡格林函数

创建时间:  2025/11/20  谭福平   浏览次数:   返回

报告题目 (Title):Simulating the nonequilibrium Green’s function by dynamic mode decomposition and operator learning(动态模态分解与算子学习模拟非平衡格林函数)

报告人 (Speaker):印佳 青年研究员(复旦大学)

报告时间 (Time):2025年11月20日 (周四) 10:00

报告地点 (Place):校本部 GJ303教室

邀请人(Inviter):涂一辉


报告摘要:Computing the numerical solution of the Kadanoff-Baym equations (KBEs), a set of nonlinear integral differential equations satisfied by the two-time Green’s functions derived from many-body perturbation theory for a quantum many-body system away from equilibrium, is a challenging task. In this talk, I will report our recent efforts on extrapolating the two-time Green’s function by applying dynamic mode decomposition (DMD) and recurrent neural networks (RNN)-based operator learning. These methods require constructing models from the numerical solution of the KBE within a small time window to extrapolate both the time-diagonal and off-diagonal elements of the Green’s function. We demonstrate the efficiency and accuracy of these approaches by applying it to Hubbard model problems.

上一条:Seminar第2969讲 电磁动理学耦合输运方程组的半解析、波形渐近保持、保结构谱元方法​

下一条:Seminar第2967讲 窄区域上的椭圆边界问题

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们