Seminar第2965讲 关于自卷积Volterra积分与积分微分方程的Galerkin方法收敛性分析

创建时间:  2025/11/19  谭福平   浏览次数:   返回

报告题目 (Title):On the convergence of Galerkin methods for auto-convolution Volterra integral and integro-differential equations

报告题目 (中文):关于自卷积Volterra积分与积分微分方程的Galerkin方法收敛性分析

报告人 (Speaker):梁慧 教授 哈尔滨工业大学(深圳)

报告时间 (Time):2025年11月20日(周四) 10:00

报告地点 (Place):#腾讯会议:178-839-082

邀请人(Inviter):李新祥


报告摘要:The auto-convolution Volterra integral and integro-differential equations arise in many applications, for example, in the identification of memory kernels in the theory of viscoelasticity and in the computation of certain special functions. The convergence analysis of piecewise polynomial collocation solutions for these two kinds of equations is now largely well understood. However, the convergence analysis on Galerkin methods is still not clear. In this talk, we will show that the quadrature Galerkin method obtained from the Galerkin method by approximating the inner products by suitable numerical quadrature formulas, is equivalent to the continuous piecewise polynomial collocation method. In addition, the convergence and superconvergence of the numerical solution based on Galerkin methods are investigated.

上一条:Seminar第2966讲 通过WZ方法建立同余式

下一条:核心数学研究所——几何与分析综合报告第112讲 Minkowski自同态

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们