Seminar第2953讲 模型和数据驱动的完全离散连续数据同化算法:误差估计和参数恢复

创建时间:  2025/11/12  谭福平   浏览次数:   返回

报告题目 (Title):Model and data-driven fully discrete continuous data assimilation algorithms: error estimates and parameter recovery (模型和数据驱动的完全离散连续数据同化算法:误差估计和参数恢复)

报告人 (Speaker):王晚生教授 (上海师范大学)

报告时间 (Time):2025年11月13日(周四) 10:00 am

报告地点 (Place):腾讯会议 985 273 770

邀请人(Inviter):朱佩成


报告摘要:The purpose of this study is to provided error estimates for model and data-driven fully discrete continuous data assimilation algorithms for reaction-diffusion equations and recover the diffuse interface width parameter for nonlinear Allen-Cahn equation by a continuous data assimilation algorithm proposed recently. We obtain the large-time error between the true solution of the Allen-Cahn equation and the data assimilated solution produced by implicit-explicit (IMEX) one-leg fully discrete finite element methods due to discrepancy between an approximate diffuse interface width and the physical interface width. The strongly $A$-stability of the one-leg methods plays key roles in proving the exponential decay of initial error. Based on the long-time error estimates, we develop several algorithms to recover both the true solution and the true diffuse interface width using only spatially discrete phase field function measurements. Numerical experiments confirm our theoretical results and verify the effectiveness of the proposed methods.

上一条:Seminar第2954讲 着色李代数的量子普遍包络代数

下一条:Seminar第 2952讲 三维不规则外域奇扰动对流扩散反应问题的高效谱法

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们