Seminar第1643期 一阶拟线性双曲系统的局部和整体抛物极限

创建时间:  2018/05/30  谭福平   浏览次数:   返回

报告主题:一阶拟线性双曲系统的局部和整体抛物极限
报告人:彭跃军 教授 (Université Clermont Auvergne / CNRS)
报告时间:2018年6月3日(周日)9:00
报告地点:校本部E408
邀请人:盛万成

报告摘要:Consider the Cauchy problem for a multidimensional first-order quasilinear hyperbolic system with a relaxation term of and a parameter standing often for the relaxation time. This kind of systems include a large number of physical models such as the Euler equations with damping, the Euler-Maxwell system for plasma and the M1-model in the radiative transfer theory etc. We are interested in the relaxation limit of the system as the relaxation time tends to zero. I will describe the formal derivation of parabolic equations from the system in a slow time scaling. Under stability conditions, the justification of the limit is shown for smooth solutions, locally in a uniform time interval and globally in time when initial data are close to constant equilibrium states.


欢迎教师、学生参加 !

上一条:Seminar第1641期 On smoothness of extremizers to the Tomas-Stein inequality for S^1

下一条:Seminar第1644期 我的三十年河西

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们