Seminar第2927讲 二维奇性依赖的抛物-椭圆型的Keller-Segel方程和其平均场极限推导

创建时间:  2025/10/24  谭福平   浏览次数:   返回

报告题目 (Title): Two-dimensional signal-dependent parabolic-elliptic Keller-Segel system and its mean field derivation (四)(二维奇性依赖的抛物-椭圆型的Keller-Segel方程和其平均场极限推导)

报告人 (Speaker): Lukas Bol 博士(曼海姆大学)

报告时间 (Time):2025年11月4日(周二)14:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):盛万成


报告摘要:We finish the discussion of the convergence of the particle trajectories. Under a regularity assumption of the initial data, we can use the relative entropy method to derive the strong L^1 convergence for the propagation of chaos, at least for short times. These restrictions are due to the term \nabla\log u^{\varepsilon}, which requires a uniform L^{\infty} bound in time and space. Therefor we introduce an equation for  p=\nabla\log u^{\varepsilon}. The regularity assumption of the initial data allows us to infer uniform bounds on higher derivatives of u^{\varepsilon} and v^{\varepsilon} which appear as coefficients in the equation for p. Now the uniform bound for \nabla\log u^{\varepsilon} can be shown by a fix-point argument.

上一条:Seminar第2928讲 二维奇性依赖的抛物-椭圆型的Keller-Segel方程和其平均场极限推导

下一条:Seminar第2926讲 二维奇性依赖的抛物-椭圆型的Keller-Segel方程和其平均场极限推导

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们