Seminar第1605期 Global existence for semilinear damped wave equations in the scattering case

创建时间:  2018/05/12  谭福平   浏览次数:   返回

报告主题:Global existence for semilinear damped wave equations in the scattering case
报告人:王成波   教授   (浙江大学)
报告时间:2018年 5月17日(周四)14:30
报告地点:校本部G507
邀请人:尹思露

报告摘要:In this talk, we consider small data global existence for semilinear (power type) damped wave equations in the scattering case, posed on three dimensional nontrapping asymptotically Euclidean manifolds, or asymptotically flat manifolds (which are sufficiently close to the Minkowski space-time). It is known that John’s classical blow up theorem with power $p<1 +\sqrt{2}$ also apply in this setting for the minkowski space-time. in contrast, we show that when $p>1+\sqrt{2}$, we have small data global existence, which verifies that the critical power for the problem in the scattering case is the same as the semilinear (power type)  wave equations. This is a joint work with Mengyun Liu.


欢迎教师、学生参加 !

上一条:Seminar第1603期 用间隙泛函的最小化决定基本解法的最佳源分布

下一条:Seminar第1606期 On Some Estimates of Hawking Mass for CMC Surfaces

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们