Seminar第1590期 A stable scheme for a 2D dynamic Q-tensor model of nematic liquid crystals

创建时间:  2018/04/24  谭福平   浏览次数:   返回

报告主题:A stable scheme for a 2D dynamic Q-tensor model of nematic liquid crystals
报告人:蔡勇勇 特聘研究员 (北京计算科学研究中心)
报告时间:2018年 4月25日(周三)15:00
报告地点:校本部G507
邀请人:姚锋平


报告摘要:We propose an unconditionally stable numerical scheme for a $2D$ dynamic $Q$-tensor model of nematic liquid crystals. This dynamic $Q$-tensor model is a $L^2$ gradient flow generated by the liquid crystal free energy that contains a cubic term, which is physically relevant but makes the free energy unbounded from below, and for this reason, has been avoided in other numerical studies. The unboundedness of the energy brings significant difficulty in analyzing the model and designing numerical schemes. By using a stabilizing technique, we construct an unconditionally stable scheme, and establish its unique solvability and convergence. Our convergence analysis also leads to, as a byproduct, the well-posedness of the original PDE system for the 2D Q-tensor model. Several numerical examples are presented to validate and demonstrate the effectiveness of the scheme.

欢迎教师、学生参加 !

上一条:Seminar第1591期 Gravitational Wave Detection with Micrometer Quantum Systems

下一条:Seminar第1591期 Gravitational Wave Detection with Micrometer Quantum Systems

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们