Seminar第1554期 Generating Polynomials and Symmetric Tensor Decompositions

创建时间:  2017/12/08  谭福平   浏览次数:   返回

报告主题:Generating Polynomials and Symmetric Tensor Decompositions
报告人:Jiawang Nie 教授 (加州大学圣地亚哥分校)
报告时间:2017年 12月18日(周一)9:00
报告地点:校本部G507
邀请人:白延琴 教授
 
报告摘要:This paper studies symmetric tensor decompositions. For symmetric tensors, there exist linear relations of recursive patterns among their entries. Such a relation can be represented by a polynomial, which is called a generating polynomial. The homogenization of a generating polynomial belongs to the apolar ideal of the tensor. A symmetric tensor decomposition can be determined by a set of generating polynomials, which can be represented by a matrix. We call it a generating matrix. Generally, a symmetric tensor decomposition can be determined by a generating matrix satisfying certain conditions. We characterize the sets of such generating matrices and investigate their properties (e.g., the existence, dimensions, nondefectiveness). Using these properties, we propose methods for computing symmetric tensor ecompositions. Extensive examples are shown to demonstrate the efficiency of proposed methods.


欢迎教师、学生参加 !

上一条:Seminar第1552期 Pooling问题的算法设计与复杂性分析

下一条:Seminar第1555期 Positive extensions of Schur multipliers

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们