Seminar第2887讲 具有快/慢扩散的平流扩散方程的奇异效应

创建时间:  2025/07/01  谭福平   浏览次数:   返回

报告题目 (Title):Singularity effects for advection-diffusion equations with fast/slow diffusion

中文标题:具有快/慢扩散的平流扩散方程的奇异效应

报告人 (Speaker):梅茗

报告时间 (Time):2025年7月5日15:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):盛万成


报告摘要:This talk is a survey of our recent studies on Fisher-KPP equations and Burgers equations with fast/slow diffusion with singularities. When the diffusion is degenerate with singular point u=0, the equations possess the so-called sharp traveling waves which are regionally degenerate. On the other hand, when the diffusion is fast diffusion, the equations become singular at u=0. The main concerns of this talk are to investigate the sharp traveling waves and their stabilities. Singularities for both the fast/slow diffusion cases cause the essential difficulty for the study.

上一条:Seminar第2888讲 基于调制函数的非渐近状态估计

下一条:Seminar第2886讲 Flory-Huggins-Cahn-Hilliard-Navier-Stokes方程组的保正及能量稳定的有限差分格式

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们