Seminar第1508期 椭圆方程基于P1元的中心差分方法的H^1超收敛

创建时间:  2017/09/26  谭福平   浏览次数:   返回

报告主题:椭圆方程基于P1元的中心差分方法的H^1超收敛
报告人:何银年 教授 (西安交通大学)
报告时间:2017年 10月9日(周一)10:00
报告地点:校本部G507
邀请人:李常品
 
报告摘要: In this paper, the coefficient matrixes of the center finite difference (CFD) method based on P1-element on the non-uniform mesh for solving the elliptic equation is reduced and the H1-stability and convergence of the CFD solution uh is provided. Next, the H1-super-convergence of u_h to I_hu is obtained under the case of the almost-uniform mesh. Based on the H^1-super-convergence of u_h to I_hu, the optimal L^2-error estimate of the numerical solution u_h and the H^1-super-convergence error estimate of the interpolation solution I^2_{2h}u_h are derived. Finally, some numerical tests are made to show the analytical results of the CFD method.


欢迎教师、学生参加 !

上一条:Seminar第1509期 自适应特征值计算

下一条:Seminar第1507期 目标配准与形状分析的整体框架

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们