Seminar第2811讲 非线性反问题的一种正则化多层次方法

创建时间:  2025/03/10  谭福平   浏览次数:   返回

报告题目 (Title):A regularizing multilevel approach for nonlinear inverse problems(非线性反问题的一种正则化多层次方法)

报告人 (Speaker): 王薇 教授(嘉兴大学)

报告时间 (Time):2025年3月13日(周四) 19:00

报告地点 (Place):腾讯会议:516 391 552

邀请人(Inviter):朱佩成


报告摘要:In this talk, we propose a multilevel method for solving nonlinear ill-posed problems F(x) = y in Banach spaces. By minimizing the discretized version of the regularized functionals for different discretization levels, we define a sequence of regularized approximations to the exact solution, which is shown to be stable and globally convergent for arbitrary initial guesses. The penalty terms $\Theta$ in regularized functionals are allowed to be non-smooth to include $L^p-L^1$ or $L^p-$TV (total variation) cases, which are important in reconstructing special features of solutions such as sparsity and discontinuities. Two parameter identification examples are presented to validate the theoretical analysis and verify the method's effectiveness.

上一条:Seminar第2812讲 空间分数阶非线性Schrödinger方程高精度快速数值算法研究

下一条:Seminar第2810讲 有理数可数性的构造证明

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们