Seminar第1433期 高维结构化数据的优化算法

创建时间:  2017/05/03  谭福平   浏览次数:   返回

报告主题:高维结构化数据的优化算法
报告人:陶少哲 博士生 (美国明尼苏达大学)
报告时间:2017年5月10日(周三)14:00
报告地点:校本部G508
邀请人:白延琴
 
报告摘要:The talk will present my recent work in optimization methods for solving structured high dimension problems. In first part of the talk, we show all common first-order method, such as ISTA, FISTA, ADMM, coordinate descent, exhibit local linear convergence for LASSO problem. Using a spectral analysis, we show that, when close enough to the solution, FISTA slows down compared to ISTA, making it advantageous to switch to ISTA towards the end. In the second part, we propose a novel estimator for inverse covariance matrix with group structure. The problem can be efficiently solved via Frank-Wolfe method, leveraging chordal sparsity for scalability. Numerical results on synthetic and real datasets show significant improvement in sample complexity and performance.

欢迎教师、学生参加 !

上一条:Seminar第1434期 複合樑自然頻率的上界理論近似方法

下一条:Seminar第1435期 Solving second-order nonlinear boundary value problem under nonlinear boundary conditions by an fast convergence iterative method

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们