Seminar第1431期 复杂系统中的因果关系及统计建模

创建时间:  2017/04/27  谭福平   浏览次数:   返回

报告主题:复杂系统中的因果关系及统计建模
报告人:陈洛南 研究员 (中国科学院上海生命科学研究院)
报告时间:2017年4月28日(周五)10:00
报告地点:校本部F307
邀请人:许新建
 
报告摘要:Quantifying causality between variables from observed time series data is of great importance in various disciplines. Unlike the conventional methods, we find it possible to detect causality only with very short time series data, based on embedding theory of an attractor for nonlinear dynamics. Specifically, we first show that measuring the smoothness of a cross map between two observed variables can be used to detect a causal relation. Then, we provide a very effective algorithm to computationally evaluate the smoothness of the cross map, and thus to infer the causality, which can achieve high accuracy even with very short time series data. Analysis of both mathematical models from various benchmarks and real data from biological systems validates our method.

 
欢迎教师、学生参加 !

上一条:Seminar第1429期 孤子方程与光滑/离散曲线的形变:I. 修正KdV方程与平面曲线形变

下一条:Seminar第1430期 孤子方程与光滑/离散曲线的形变:II. 修正KdV方程与非线性Schrödinger方程和空间曲线形变

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们