Seminar第2803讲 模顶点代数的格结构

创建时间:  2024/12/21  谭福平   浏览次数:   返回

报告题目 (Title): Lattice structure of modular vertex algebras(模顶点代数的格结构)

报告人 (Speaker): 景乃桓教授 (北卡州立大学)

报告时间 (Time):2024年12月26日(周四)15:00-16:00

报告地点 (Place):校本部GJ303


报告摘要: The integral lattice of VOA was constructed by Dong and Griess for finite automorphism group of the VOA. We will show that the general divided powers of vertex operators preserve the integral form spanned by Schur functions indexed by partition-valued functions, which generate an analog of the Kostant-Lusztig Z-form for the lattice VOA. In particular, we show that the Garland operators, counterparts of divided powers of Heisenberg elements in affine Lie algebras, also preserve the integral form. We also study the irreducible modules for the modular lattice vertex algebra.

上一条:Seminar第2804讲 关于普遍仿射顶点算子代数的奇异向量和$L_k(sl_n)$的变体

下一条:Seminar第2802讲 量子仿射李代数的Verma型模

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们