Seminar第1411期 Frobenius流形与Frobenius代数值可积系统

创建时间:  2017/04/01  谭福平   浏览次数:   返回

报告主题:Frobenius流形与Frobenius代数值可积系统
报告人:左达峰 教授 (中国科技大学)
报告时间:2017年4月6日(周四)10:00
报告地点:校本部G507
邀请人:张大军教授
主办部门:理学院数学系
报告摘要:The notion of integrability will often extend from systems with scalar-valued ields to systems with algebra-valued fields. In such extensions the properties of, and structures on, the algebra play a central role in ensuring integrability is preserved. In this talk based on a joint work with Ian strachan, a new theory of Frobenius algebra-valued integrable systems is developed. This is achieved for systems derived from Frobenius manifolds by utilizing the theory of tensor products for such manifolds, as developed by Kaufmann (Int Math Res Not 19:929–952, 1996), Kontsevich and Manin (Inv Math 124: 313–339, 1996). By specializing this construction, using a fixed Frobenius algebra A, one can arrive at such a theory. More generally, one can apply the same idea to construct an A-valued topological quantum field theory. The Hamiltonian properties of two classes of integrable evolution equations are then studied: dispersionless and dispersive evolution equations. Application of these ideas are discussed, and as an example, an A-valued modified Camassa–Holm equation is constructed.


欢迎教师、学生参加 !

上一条:Seminar第1412期 哈代空间上的系数乘子

下一条:Seminar第1410期 网络分布式控制与优化相关进展和挑战

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们