Seminar第1372期 具有快速收敛的多项式离散规划的线性模型

创建时间:  2016/11/29  谭福平   浏览次数:   返回

报告主题:具有快速收敛的多项式离散规划的线性模型
报告人: 方述诚 教授 (美国北卡州立大学)
报告时间:2016年12月14日(周三)16:00
报告地点:校本部G508
邀请人:白延琴

报告摘要:Optimization models involving a polynomial objective function and multiple polynomial constraints with discrete variables are often encountered in engineering, management and systems. Treating the non-convex cross-product terms is the key. State-of-the-art methods usually convert such a problem into a 0-1 mixed integer linear programming problem, and, then, adopt a branch-and-bound scheme to find an optimal solution. Much effort has been spent on reducing the required numbers of variables and linear constraints as well as on avoiding unbalanced branch-and-bound trees. This talk presents a novel idea of linearizing the discrete cross-product terms in an extremely effective manner. Theoretical analysis shows that the new method significantly reduces the required number of linear constraints from O(h3n3) to O(hn) for a cubic polynomial discrete program with n variables in h possible values. Numerical experiments also conform a two-order (102 times) reduction in computational time for randomly generated problems with millions of variables and constraints.


欢迎教师、学生参加 !

上一条:Seminar第1371期 密文域信号处理

下一条:Seminar第1371期 密文域信号处理

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们