Seminar第2759讲 高阶面和边缘元素的几何分解和有效实现

创建时间:  2024/10/29  谭福平   浏览次数:   返回

报告题目 (Title):Geometric decomposition and efficient implementation of high order face and edge elements(高阶面和边缘元素的几何分解和有效实现)

报告人 (Speaker):黄学海 教授(上海财经大学)

报告时间 (Time):2024年10月29日 (周二) 10:00-11:00

报告地点 (Place):校本部 B424教室

邀请人(Inviter):涂一辉


报告摘要:This talk investigates high-order face and edge elements in finite element methods, with a focus on their geometric attributes, indexing management, and practical application. The exposition begins by a geometric decomposition of Lagrange finite elements, setting the foundation for further analysis. The discussion then extends to H(div)-conforming and H(curl)-conforming finite element spaces, adopting variable frames across differing sub-simplices. The imposition of tangential or normal continuity is achieved through the strategic selection of corresponding bases. We concludes with a focus on efficient indexing management strategies for degrees of freedom, offering practical guidance to researchers and engineers. It serves as a comprehensive resource that bridges the gap between theory and practice.

上一条:Seminar第2760讲 Kohn-Sham广义特征值问题的一种新的分裂方法

下一条:Seminar第2758讲 A quadratically convergent semismooth Newton method for nonlinear semidefinite programming without subdifferential regularity

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们