Seminar第1343期 大规模成像问题的SVD近似

创建时间:  2016/10/18  -管理员   浏览次数:   返回

报告主题:大规模成像问题的SVD近似
报告人:James G. Nagy 教授(Emory 大学)
报告时间:2016年10月27日(周四)14:30
报告地点:校本部G507
邀请人:张建军
主办部门:理学院数学系
报告摘要:A fundamental tool for analyzing and solving ill-posedinverse problems is the singular value decomposition (SVD). However, in imaging applications the matrices are often too large to be able to efficiently compute the SVD. In this talk we present a general approach to describe how an approximate SVD can be used to efficiently compute approximate solutions for large-scale ill-posed problems, which can then be used either as an initial guess in a nonlinear iterative scheme, or as a preconditioner for linear iterative methods. We show more specifically how to efficiently compute an SVD approximation for certain applications in image processing.

欢迎教师、学生参加 !

上一条:Seminar第1344期 计算Groebner 基的新算法框架

下一条:上海大学核心数学讲座第二讲 从复数谈起

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们