核心数学研究所——几何与分析综合报告第90讲 双曲空间中有限指标的常平均曲率曲面

创建时间:  2024/10/16  谭福平   浏览次数:   返回

报告题目 (Title): CMC hypersurface in hyperbolic space with finite index

中文标题:双曲空间中有限指标的常平均曲率曲面

报告人 (Speaker):洪寒(北京交通大学)

报告时间 (Time):2024年10月17日(周四) 1:30

报告地点 (Place):校本部GJ403

邀请人(Inviter):席东盟、李晋、吴加勇


报告摘要:Stable Bernstein problem asks whether two-sided stable minimal hypersurface must be hyperplane. Stability can be also defined on constant mean curvature (CMC) hypersurfaces. A similar question is asked by do Carmo on CMC hypersurfaces that whether stable ones must be “minimal” in general manifolds. In this talk, we will discuss some results about this question, especially in Euclidean space and hyperbolic space. In particular, we show that under certain assumption stable ones in hyperbolic space with mean curvature no less than one must have mean curvature one. The idea is the application of mu-bubble and harmonic function theory.

上一条:Seminar第2503讲 CNLS方程质量能量守恒的线性化有限元方法无条件超收敛分析

下一条:Seminar第2752讲 Nakayama自同构和滤形变下的模导子之间的关系

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们