Seminar第2734讲 Q4方程的tau函数: I, II

创建时间:  2024/09/30  谭福平   浏览次数:   返回

报告题目 (Title):On connection problems and algebraic equations over fields of elliptic functions: I, II(Q4方程的tau函数)

报告人 (Speaker):Pieter Roffelsen副教授 (悉尼大学,澳大利亚)

报告时间 (Time):I. 2024年09月28日; 下午14:00-15:30

II. 2024年09月29日; 下午14:00-15:30

报告地点 (Place):校本部GJ303

邀请人(Inviter):张大军


报告摘要:Jimbo (1982) showed that the problem of relating the asymptotic behaviours of Painlevé VI transcendents at distinct critical points, the connection problem, reduces to a set of equations involving a cubic surface, the gamma function and trigonometric functions, under the Riemann-Hilbert correspondence. After revisiting this result, we will analyze the analog for q-Painlevé VI. In that case, we will see that the connection problem reduces to a set of equations involving a Segre surface, the q-gamma function and elliptic functions. Whilst this is certainly a reduction in complexity, the reduced problem is still very rich and gets to some deep questions about integrable difference equations that we will explore.

上一条:Seminar第2735讲 基于椭圆曲线的动力学:从Newton到Okamoto

下一条:Seminar第2733讲 Q4方程的tau函数: II

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们