Seminar第2667讲 阶Taft代数的Drinfeld Doubles与Jones多项式的一个推广

创建时间:  2024/06/11  谭福平   浏览次数:   返回

报告题目 (Title):Drinfeld Doubles of The N-Rank Taft Algebras and A Generalization of The Jones Polynomial

报告题目 (Title):N阶Taft代数的Drinfeld Doubles与Jones多项式的一个推广

报告人 (Speaker): 胡乃红 教授 (华东师范大学)

报告时间 (Time):2024年6月11日(周二) 14:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):张红莲、孙建才


报告摘要:In this talk, we describe the Drinfeld double structure of the n-rank Taft algebra and all of its simple modules, and then endow its R-matrices with an application to knot invariants. The knot invariant we get is a generalization of the Jones polynomial, in particular, it coincides with the Jones polynomial in the rank 1 case, while in the rank 2 case, it is the one-parameter specialization of the two-parameter unframed Dubrovnik polynomial, and in higher rank case it is the composite (n-power) of the Jones polynomial. This is a joint work with Ge Feng and Yunnan Li.

上一条:Seminar第2668讲 非线性优化新进展

下一条:Seminar第2666讲 仿射李超代数的混合上同调群

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们