核心数学研究所——几何与分析综合报告第76讲 相对展开图、Banach空间中的度量嵌入和高指标问题

创建时间:  2024/04/22  谭福平   浏览次数:   返回

报告题目 (Title):Relative expander graphs, metric embeddings into Banach spaces and higher index problems

中文标题:相对展开图、Banach空间中的度量嵌入和高指标问题

报告人 (Speaker):王勤(华东师范大学)

报告时间 (Time):2024年4月24日(周三) 10:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):席东盟、李晋、张德凯、吴加勇


报告摘要:Relative expanders are families of Cayley graphs whose metric geometry lies in between the geometry of a Hilbert space and that of a genuine expander. They were introduced by Arzhantseva and Tessera in terms of relative Poincare inequalities. In fact, these spaces do not coarsely embed into any uniformly curved Banach space introduced by Pisier. We show that certain relative expanders satisfy the coarse Baum-Connes conjecture and possesses operator K-theory amenability. In this lecture, we will discuss some of key ideas and results in this circle of developments.

上一条:Seminar第2644讲 ​关于拉马努金的两个与五次模形式方程相关的恒等式的新视角

下一条:Seminar第2643讲 大尺度反问题的混合投影法

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们