Seminar第2636讲 重新着色无P5图

创建时间:  2024/04/08  谭福平   浏览次数:   返回

报告题目 (Title):Recoloring P5-free graphs

中文题目:重新着色无P5图

报告人 (Speaker):史永堂 教授(南开大学)

报告时间 (Time):2024年4月10日 (周三) 9:30

报告地点 (Place):腾讯会议463560158

邀请人(Inviter):何卓衡


摘要:A k-coloring of a graph G=(V,E) is a mapping \phi: V\to \{1,2,\ldots,k\} such that \phi(u)\neq\phi(v) for any edge uv\in E(G). The reconfiguration graph for the k-colorings of $G$, denoted by \mathcal{R}_k(G), is the graph whose vertices are the k -colorings of $ G $ and two colorings are joined by an edge if they differ in color on exactly one vertex. Let k and \ell be two integers with \ell> k\geq2.

For any k-colorable P_4-free graph G, Bonamy and Bousquet proved that \mathcal{R}_{\ell}(G) is connected. On the other hand, they pointed out that, there is a k-colorable P_6-free graph G with \mathcal{R}_{\ell}(G) disconnected. This leaves the open case P_5-free graphs. Feghali and Merkel proved that, for every positive integer p, there exists a 7p-colorable P_5-free graph G such that \mathcal{R}_{8p}(G) is disconnected.

In this talk, we shall prove that, \mathcal{R}_{\ell}(G) is connected for each 3-colorable P_5-free graph G and each \ell\geq4. We also show that, there exists a k -colorable P_5-free graph G with \mathcal{R}_{\ell}(G) disconnected for each k\geq4 and k+1\leq\ell\leq\binom{k}{2}.

上一条:核心数学研究所——几何与分析综合报告第71讲 非交换的对数Sobolev不等式

下一条:Seminar第2635讲 有限维代数的砖的有限性

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们