Seminar第2593讲 随机直接搜索的非收敛性分析

创建时间:  2023/11/28  谭福平   浏览次数:   返回

报告题目 (Title):Non-convergence Analysis of Randomized Direct Search(随机直接搜索的非收敛性分析)

报告人 (Speaker):张在坤 副教授(香港理工大学,知名专家)

报告时间 (Time):2023年11月28日 (周二) 19:00

报告地点 (Place):腾讯会议(742226720)

邀请人(Inviter):徐姿 教授


报告摘要:Direct search is a popular method in derivative-free optimization. Randomized direct search has attracted increasing attention in recent years due to both its practical success and theoretical appeal. It is proved to converge under certain conditions at the same global rate as its deterministic counterpart, but the cost per iteration is much lower, leading to significant advantages in practice. However, a fundamental question has been lacking a systematic theoretical investigation: when will randomized direct search fail to converge? We answer this question by establishing the non-convergence theory of randomized direct search. We prove that randomized direct search fails to converge if the searching set is probabilistic ascent. Our theory does not only deepen our understanding of the behavior of the algorithm, but also clarifies the limit of reducing the cost per iteration by randomization, and hence provides guidance for practical implementations of randomized direct search.

上一条:核心数学研究所—几何与分析综合报告第56讲 Beurling-Wintner问题与解析数论

下一条:Seminar第2592讲 近似影响域对非局部模型局部收敛性的影响

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们