核心数学研究所——几何与分析综合报告第55讲 弦对数闵可夫斯基问题的正则性

创建时间:  2023/11/22  谭福平   浏览次数:   返回

报告题目 (Title):Regularity of the chord log-Minkowski problem

中文标题: 弦对数闵可夫斯基问题的正则性

报告人 (Speaker):鲁建 研究员 华南师范大学

报告时间 (Time):2023年11月23号(周四),16:00

报告地点 (Place):腾讯会议:921-522-704密码:4930

邀请人(Inviter):席东盟、李晋、张德凯


报告摘要:The chord log-Minkowski problem arises from integral geometry, which was initially proposed by Lutwak-Xi-Yang-Zhang recently. In the smooth case, it is equivalent to solving a type of nonlocal Monge-Ampere equation on the unit hypersphere. Actually, it involves a Riesz potential defined on a bounded domain. We will mainly talk about a new result on the regularity of solutions to the chord log-Minkowski problem, which is based on a joint work with Jinrong Hu and Yong Huang.

上一条:Seminar第2580讲 空间曲线与KP方程的孤立子

下一条:Seminar第2579讲 几何流曲面演化的参数有限元近似

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们