Seminar第2568讲 有效的谱Galerkin方法求解三维复杂区域偏微分方程

创建时间:  2023/11/16  谭福平   浏览次数:   返回

报告题目 (Title):Efficient spectral-Galerkin methods for PDEs in three-dimensional complex geometries(有效的谱Galerkin方法求解三维复杂区域偏微分方程)

报告人 (Speaker):王中庆 教授(上海理工大学)

报告时间 (Time):2023年11月17日; 13:00-15:30

报告地点 (Place):腾讯会议:968-592-891

邀请人(Inviter):吴 华


报告摘要:In this paper, we introduce a new spherical coordinate transformation, which transforms three-dimensional curved geometries into a unit sphere. This transformation plays an important role in spectral approximations of differential equations in three-dimensional curved geometries. Some basic properties of the spherical coordinate transformation are given. As examples, we consider an elliptic equation in three-dimensional curved geometries, prove the existence and uniqueness of the weak solution, construct the Fourier-Legendre spectral-Galerkin scheme and analyze the optimal convergence of numerical solutions under $H^1$-norm. We also apply the suggested approach to the Gross–Pitaevskii equation in three-dimensional curved geometries and present some numerical results. The proposed algorithm is very effective and easy to implement for problems in three-dimensional curved geometries. Abundant numerical results show that our spectral-Galerkin method possesses high order accuracy.

上一条:Seminar第2569讲 双曲守恒律方程组的高精度格式

下一条:核心数学研究所——几何与分析综合报告第51讲 无界闭凸集的对偶Brunn-Minkowski理论

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们