报告题目 (Title):Hamilton-Souplet-Zhang type estimate under integral Ricci curvature condition and its application to Li-Yau inequality
中文标题:积分Ricci曲率条件下的Hamilton-Souplet-Zhang型估计及其在Li-Yau不等式中的应用
报告人 (Speaker):朱萌(华东师范大学)
报告时间 (Time):2023年11月15日(周三) 13:30
报告地点 (Place):上海大学宝山校区F309
邀请人(Inviter):席东盟、李晋、张德凯
主办部门:理学院数学系
报告摘要:We first prove a Hamilton-Souplet-Zhang type gradient estimate for the heat equation on Riemannian manifolds satisfying certain integral Ricci curvature condition. Then as an application, by implanting the Hamilton-Souplet-Zhang type estimate in an argument of Qi S. Zhang, we show that certain integral Li-Yau inequality holds for the heat equation in this circumstance. This is a joint work with Xingyu Song, Ling Wu, and Qi S. Zhang.