Seminar第2518讲 带边紧流形上$\sigma_{2}$曲率方程

创建时间:  2023/11/01  谭福平   浏览次数:   返回

报告题目 (Title): 带边紧流形上$\sigma_{2}$曲率方程(The $\sigma_{2}$-curvature equation on a compact manifold with boundary)

报告人 (Speaker): 韦韡 研究员(南京大学)

报告时间 (Time):2023年11月2日 (周四) 10:00-12:00

报告地点 (Place): 腾讯会议728-720-963

邀请人(Inviter):高正焕


报告摘要:We first establish local $C^2$ estimates of solutions to the $\sigma_2$-curvature equation with nonlinear Neumann boundary condition. Then, under assumption that the background metric has nonnegative mean curvature on totally non-umbilic boundary, for dimensions three and four we prove the existence of a conformal metric with a prescribed positive $\sigma_2$-curvature function and a prescribed nonnegative boundary mean curvature function. The local estimates play an important role in blow up analysis in the latter existence result.

上一条:Seminar第2519讲 基于深度学习的医学图像质量增强和分割

下一条:Seminar第2517讲 基于样例的图像着色:从变分模型到深度结构

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们