Seminar第2509讲 Data-Driven Minimax Optimization with Expectation Constraints

创建时间:  2023/11/01  谭福平   浏览次数:   返回

报告题目 (Title):Data-Driven Minimax Optimization with Expectation Constraints

报告人 (Speaker):郦旭东 研究员(复旦大学大数据学院)

报告时间 (Time):2023年11月7日 (周二) 09:40

报告地点 (Place):校本部GJ303

邀请人(Inviter):徐姿 教授


报告摘要:Attention to data-driven optimization approaches has grown significantly over recent decades, but data-driven constraints have rarely been studied. In this talk, we focus on the non-smooth convex-concave stochastic minimax regime and formulate the data-driven constraints as expectation constraints. Then, we propose a class of efficient primal-dual algorithms to tackle the minimax optimization with expectation constraints, and show that our algorithms converge at the optimal rate of $\mathcal O(\frac{1}{\sqrt{N}})$, where $N$ is the number of iterations. We also verify the practical efficiency of our algorithms by conducting numerical experiments on large-scale real-world applications.

上一条:Seminar第2510讲 基于少量数据的稳健决策--分布式鲁棒模型与应

下一条:Seminar第2508讲 非线性最小二乘问题的无导数方法

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们