Seminar第2437讲 离散环面特征值的多重性

创建时间:  2023/08/24  谭福平   浏览次数:   返回

报告题目 (Title):离散环面特征值的多重性 (Eigenvalue mutiplicities of discrete torus)

报告人 (Speaker): 赵永强 副教授(西湖大学)

报告时间 (Time):2023年8月29日(周二) 10:00

报告地点 (Place):校本部F309

邀请人(Inviter):毛雪峰


报告摘要(Abstract): It is well known that the standard flat torus T^2=R^2/Z^2 has arbitrary large Laplacian-eigenvalue multiplicies. Consider the discrete torus C_N * C_N with the discrete Laplacian operator; we prove, however, its eigenvalue multiplicities are uniformly bounded for any N, except for the eigenvalue one when N is even. Our main tool to prove this result is the beautiful theory of vanishing sums of roots of unity. In this talk, we will give a brief introduction to this theory and outline a proof of the uniformly boundedness multiplicity result. This is a joint work with Bing Xie and Yigeng Zhao.

上一条:Seminar第2438讲 硬边Pearcey过程的间隙概率

下一条:Seminar第2436讲 2, √2及其它

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们