Seminar第2424讲 三维非截断玻尔兹曼方程的低正则性整体解

创建时间:  2023/07/23  谭福平   浏览次数:   返回

报告题目 (Title):三维非截断玻尔兹曼方程的低正则性整体解

报告人 (Speaker):段仁军 教授 (香港中文大学)

报告时间 (Time):2023年7月19日(周三) 10:00 -12:00

报告地点 (Place):线上 腾讯会议 ID: 128 110 896

邀请人(Inviter):朱佩成


报告摘要: A class of low-regularity solutions via the Wiener algebra for the non-cutoff Boltzmann equation on the torus was previously introduced in collaboration with Liu, Sakamoto and Strain. In the talk, I will further report how to extend the result to the case of the whole space. In this case, we develop an L1-L∞ interplay technique in the Fourier space to overcome the weaker macroscopic dissipation due to diffusion phenomenon in contrast to the torus case. The key is to employ time-weighted estimates motivated from viscous conservation laws. Joint work with Shota Sakamoto and Yoshihiro Ueda.

上一条:Seminar第2425讲 关于三维各向异性Navier-Stokes方程的整体解

下一条:Seminar第2424讲 求解变分不等式的最新进展

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们