上海大学核心数学研究所——几何与分析综合报告第36讲 多狭缝的偶极Schramm-Loewner方程

创建时间:  2023/06/14  谭福平   浏览次数:   返回

报告题目 (Title):The dipolar Schramm-Loewner equation for multiple slits

中文标题: 多狭缝的偶极Schramm-Loewner方程

报告人 (Speaker):蓝师义(广西民族大学)

报告时间 (Time):2023年6月15日(周四) 10:00-11:00

报告地点 (Place):上海大学宝山校区D117

邀请人(Inviter):席东盟、李晋、张德凯


报告摘要:Let ∑ be any finitely many slits in the strip region. Using Arzela-Ascoli Theorem it is first proved that the set of driving functions associated with ∑ is a compact subset of the Banach space C[0,1]. Next, based on the 1-slit dipolar Schramm-Loewner equation a family of Loewner equations corresponding to ∑ is constructed by the technique of step function. Utilizing the continuous dependence of Loewner chains and the pre-compactness of driving functions it is derived that ∑ can be generated by a dipolar Schramm-Loewner differential equation. Moreover, it is showed that the dipolar Schramm-Loewner equation is unique via employing the properties of hull capacity.

上一条:Seminar第2406讲 关于我猜测的级数等式的综述

下一条:Seminar第2405讲 相场法在多相多场耦合问题中的应用

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们