Seminar第2377讲 基于物理学知识的神经网络混合训练寻求非线性薛定谔方程怪波解

创建时间:  2023/05/10  谭福平   浏览次数:   返回

报告题目 (Title):基于物理学知识的神经网络混合训练寻求非线性薛定谔方程怪波解(Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrodinger equation)

报告人 (Speaker): 李彪 教授(宁波大学)

报告时间 (Time):2023年5月12日(周五) 16:00

报告地点 (Place):腾讯会议:586 592 749

邀请人(Inviter):夏铁成


报告摘要:In this work, we propose Mix-training physics-informed neural networks (PINNs), a deep learning model with more approximation ability based on PINNs, combined with mixed training and prior information. We demonstrate the advantages of this model by exploring rogue waves with rich dynamic behavior in the nonlinear Schrodinger (NLS) equation. Numerical results show that compared with the original PINNs, this model can not only quickly recover the dynamical behavior of the rogue waves of NLS equation, but also significantly improve its approximation ability and absolute error accuracy, the prediction accuracy improved by two to three orders of magnitude. In particular, when the space-time domain of the solution expands or the solution has a local sharp region, the proposed model still has high prediction accuracy.

上一条:Seminar第2378讲 加权的变指标Hardy空间的实变理论

下一条:Seminar第2376讲 极大局部修复码

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们