上海大学核心数学研究所——几何与分析综合报告第31讲 齐次Monge-Ampere方程的最大秩定理

创建时间:  2023/04/29  谭福平   浏览次数:   返回

报告题目 (Title):A Maximal Rank Theorem for the Homogenous Complex Monge-Ampere Equation

中文标题: 齐次Monge-Ampere方程的最大秩定理

报告人 (Speaker):胡京辰博士(中科院华罗庚中心)

报告时间 (Time):2023年4月28日(周五) 13:30-14:30

报告地点 (Place):校本部C121

邀请人(Inviter):席东盟、李晋、张德凯


报告摘要:The convexity of solutions for various PDE has been studied extensively. Probably, the earliest result is Caratheodory's proof showing the Green functions of the Laplace operator of a convex domain in the complex plane have convex level sets; then, over the past decades, the result has been generalized to solutions for general dimensional Laplacian and the pluricomplex Green's function, and in many situations the optimal convexity estimates have been proved.

In this talk, we will show level sets of solutions to the homogenous complex Monge-Ampere equation in a linearly convex ring-shaped domain are linearly convex; as a consequence, the Hessian of the solution, which is an n by n matrix has maximum rank n-1.

上一条:Seminar第2374讲 利用扭GRS码构造MDS和NMDS自对偶码

下一条:Seminar第2373讲 椭圆方程逐点跟踪最优控制问题的自适应HGD方法

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们