Seminar第2358讲 线性插入删除码的的若干界和最优码的构造

创建时间:  2023/04/10  谭福平   浏览次数:   返回

报告题目 (Title):线性插入删除码的的若干界和最优码的构造

   Strict Half-Singleton Bound, Strict Direct Upper Bound for Linear Insertion-Deletion Codes and Optimal Codes

报告人 (Speaker): 郑大彬 教授(湖北大学)

报告时间 (Time):2023年4月14日(周五) 09:30

报告地点 (Place):校本部F309

邀请人(Inviter):张红莲


报告摘要:Let C be an [n, k] linear code over the finite field F_q. Let d_I(C) denote its insertion-deletion (insdel for short) distance, which characterizes the insdel error-correcting capability of C. In this paper we propose a strict half-Singleton upper bound d_I(\C) ≤2(n-2k+1)if C does not contain the codeword with all 1s, which generalizes the half-Singleton bound on the insdel distances of linear codes due to Cheng-Guruswami-Haeupler-Li, and a stronger direct upper bound d_I(C)≤2(d_H(C)-t) under a weak condition, where t≥1 is a positive integer determined by the generator matrix and d_H(C) denotes the Hamming distance of C. A sufficient condition for a linear code attaining the strict half-Singleton bound is given. We prove that the code length of an optimal binary linear insdel code w.r.t. the (strict) half- Singleton bound is about twice its dimension and conjecture that optimal binary linear insdel codes have exact parameters [2k, k, 4] or [2k+1, k, 4] w.r.t. the half- or strict half-Singleton bound, respectively.

上一条:Seminar第2359讲 达到Griesmer界的最优二元自正交码的研究

下一条:Seminar第2357讲 谱半径不超过$\sqrt{2+\sqrt{5}}$的符号图的刻画

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们