Seminar第2353讲 双图正则化前景背景分离法

创建时间:  2023/04/04  谭福平   浏览次数:   返回

报告题目 (Title):双图正则化前景背景分离法

报告人 (Speaker): 秦菁 教授(University of Kentucky)

报告时间 (Time):2023年4月3日(周一) 13:00-14:30

报告地点 (Place):F309

邀请人(Inviter):彭亚新教授


报告摘要:Foreground-background separation (FBS) has been widely used in many applications, such as video surveillance and robotics. Due to the presence of the static background, a motion video can be decomposed into a low-rank background and a sparse foreground. Many regularization techniques that preserve low-rankness of matrices can therefore be imposed on the background. In the meanwhile, geometry-based regularizations, such as graph regularizations, can be imposed on the foreground. In this talk, I will present a dual-graph regularized FBS method based on weighted nuclear norm regularization and discuss its fast algorithm based on the matrix CUR decomposition. Numerical experiments on realistic human motion data sets are used to demonstrate the proposed effectiveness and robustness in separating moving objects from background, and the potential in robotic applications.

上一条:Seminar第2354讲 光滑区域时谐Maxwell问题的一种直接延拓稳定非匹配有限元法

下一条:Seminar第2352讲 符号积分与求和式中的稳定性问题

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们