上海大学核心数学研究所——几何与分析综合报告第27讲 Riemannian metrics with prescribed volume and finite parts of Dirichlet spectrum

创建时间:  2023/03/23  谭福平   浏览次数:   返回

报告题目 (Title):Riemannian metrics with prescribed volume and finite parts of Dirichlet spectrum

报告人 (Speaker):王作勤教授(中国科学技术大学)

报告时间 (Time):2023年3月23日(周四) 15:00-16:00

报告地点 (Place):上海大学宝山校区D216

邀请人(Inviter):席东盟、李晋、张德凯


报告摘要:In 1980s Colin de Verdiere proved that on any closed manifold of dimension at least 3, one can construct a smooth metric with arbitrarily prescribed finite parts of eigenvalues. Later on Lohkamp showed

that one can further prescribe the volume. In this talk, I will explain how to extend their results to Dirichlet eigenvalues on manifolds with boundary. This is based on an ongoing joint work with He Xiang.

上一条:Seminar第2350讲 扩散过程间的熵估计及其在McKean-Vlasov 随机微分方程中的应用

下一条:Seminar第2349讲 Fermion-Virasoro代数的表示

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们