上海大学核心数学研究所——几何与分析综合报告第19讲 Quasi-local mass and geometry of scalar curvature

创建时间:  2022/12/01  谭福平   浏览次数:   返回

报告题目 (Title):Quasi-local mass and geometry of scalar curvature

报告人 (Speaker):史宇光 教授(北京大学)

报告时间 (Time):2022年12月2日(周五) 10:00-11:00

报告地点 (Place):腾讯会议(736-4167-6110)

邀请人(Inviter):席东盟、李晋、张德凯


报告摘要:Let S^{n-1}g be an n-dimensional orientable Riemannian manifold, H be a positive function on S^{n-1}, Gromov's asked under what conditions g is induced by a Riemannian metric g with nonnegative scalar curvature, for example, defined on W, and H is the mean curvature of S in W with respect to the outward unit normal vector? By the recent result due to P. Miao we know such H cannot be too large, so the next natural question is what is "optimal" H so that such a fill-in for the triple S^{n-1}gH exits? It turns out that the problem has deep relation with positive mass theorem, in this talk I will talk about some known results relate to this topic. My talk is based on my joint works with Dr. Wang Wenlong, Dr.Wei Guodong,Dr. Zhu Jintian, Dr.Liu Peng, Dr. Hu Yuhao.

上一条:Seminar第2334讲 Quantum vertex algebras and their representations

下一条:Seminar第2333讲 斜交积的莫比乌斯正交性猜想

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们