顾传青
  姓名 顾传青
职称/职务 教授、博导/钱伟长学院直属党总支书记、常务副院长
电话/传真 021-66138263/021-66132033
电子邮箱 cqgu@staff.shu.edu.cn
个人主页
学科/专业 数学学科/计算数学、统计学
主要研究领域 数值代数、数值逼近及在控制论中的应用
学术/社会兼职
《高等学校计算数学学报》责任编委(2003年-)

《上海大学学报》编委(2006年-)

中国线性代数学会(筹)秘书长(2010年-)

中国高等教育学会大学素质教育研究分会理事(2012年-)

《数学研究与评论》编委(2006-2010);

《上海大学学报》编委(2006年-);

中国线性代数学会(筹)秘书长(2010年-);

中国高等教育学会大学素质教育研究分会理事(2012年-)

主要获奖
1990年获机械电子工业部青年教书育人工作优秀奖

1990年获安徽省科协优秀论文二等奖

1993年获机械工业部科学进步二等奖

1994年获国务院政府特殊津贴

2001年获上海市教学成果二等奖

2003年获上海大学首届"教学名师"奖

2008年获"上海大学2003-2007年优秀本科生导师"

2009年获上海市教学成果一等奖

2010年获上海大学"优秀毕业设计(论文)"奖

2010年获上海大学教学名师奖

2011年获上海市自然科学二等奖

主要课程教学
本科生教学:

1997学年至今《高等数学》

1997学年《线性代数》

1998学年至2000学年《复变函数》

2002学年《高等代数三》

2003学年《线性代数A》

2003学年《数理方程》

2006学年至今《创新实践》

2007学年至今《科学研讨课》

2008学年《数学分析五》,

2008学年《高等代数二》

2011学年秋季、春季学期《大师的轨迹——钱伟长为什么能?》

研究生教学:

2004、2006、2007、2008学年《非线性逼近的理论与方法》

2005学年《高等数值分析》

2009、2010学年《矩阵计算》

主要学术成果
1.模型简化问题中的矩阵Padé逼近方法

在国际上从1997年起系统地建立了基于广义逆矩阵Padé逼近和矩阵Padé-型逼近两种新的方法.该方法特点是不需要计算矩阵的乘法,不需要计算矩阵的逆,并分别应用于单输入单输出和多输入多输出控制系统的模型简化问题. 基于广义逆矩阵Padé逼近的主要结果发表在国际著名期刊1999,2001 Linear Algebra Appl.,2003 IEEE Trans. Automat.Control; 矩阵Padé-型逼近的主要结果发表在期刊2004,2009,2012 J.Comput.Appl.Math.

2.模型简化问题中的Krylov子空间方法

在2010J.Comput.Appl.Math.,2010IEEE Conferences文章中,我们提出了基于SVD-Krylov等式约束的最小二乘模型简化方法,其创新点在于通过引入Hankel矩阵的平移算子,使降阶后的模型能准确地匹配原模型的前 个模,提高逼近阶为 个模,其中 .

3.模型简化问题中的矩阵方程的数值迭代算法

在Lyapunov矩阵方程和多右端矩阵方程的数值求解方面,我们提出了位移分层法(2009 Linear Algebra Appl.)、斜块对称法(2009 J.Comput.Appl.Math.)、Kronecker迭代算法、全局 SCD算法等迭代算法和Toeplitz方程组的迭代算法(2009 J.Comput.Appl.Math.).

4. Banach空间中非线性方程的迭代算法

我们提出了Banach空间中非线性方程的一系列高阶迭代算法,并证明了具有半局部收敛性,这些算法可以应用于求解控制论中的非线性矩阵方程.结果发表在国际期刊2010Comput.Math.Appl.,2011(56),2011(57),2012(59),2012(60)Numerical Algorithms,2012 J Optim Theory Appl.

代表性论著
模型简化问题中的矩阵Padé逼近方法和Krylov子空间方法:

1. Gu Chuanqing(顾传青), A Practical Two-Dimensional Thiele-Type Matrix PadéApproximation, IEEE Trans. Automat. Control, 2003,48(12): 2259-2263.

2. Gu Chuanqing, Generalized inverse matrix Padé approximation on the basis of scalar products, Linear Algebra and Its Applications, 2001, 322: 141-167.

3. Gu Chuanqing, Thiele-type and Lagrange-type generalized inverse rational interpolation for rectangular complex matrices, Linear Algebra and Its Applications, 1999, 295: 7-30.

4. Xiaojing Zhu, Chunjing Li, Chuanqing Gu, A new method for computing the matrix exponential operation based on vector valued rational approximations, Journal of Computational and Applied Mathematics, 2012, 236: 2306-2316.

5. Youtian Tao, Chuanqing Gu*, A two-dimensional matrix Padé-type approximation in the inner product space, Journal of Computational and Applied Mathematics, 2009, 231 (2): 680-695.

6.Chuanqing Gu, Jindong Shen, Function-valued Padé-type, approximant via the formal orthogonal polynomials and its, applications in solving integral equations, Journal of Computational and Applied Mathematics, 2008, 221 (1): 114-131.

7. Gu Chuanqing, Matrix Padé-type Approximant and Directional Matrix Padé Approximant in the Inner Product Space, Journal of Computational and Applied Mathematics, 2004, 164-165: 365-385.

8. Wang Jinbo, Gu Chuanqing*, Vector valued Thiele-Werner-type osculatory rational interpolants, Journal of Computational and Applied Mathematics, 2004, 163 (1): 241-252.

9. Gu Chuanqing, Multivariate generalized inverse vector valued rational interpolants, Journal of Computational and Applied, Mathematics, 1997, 84: 137-146.

10.Gu Chuanqing, Bivariate Thiele-type matrix valued rational interpolants, Journal of Computational and Applied Mathematics, 1997, 80:71-82.

11. Yu’e An, Gu Chuanqing*, Model reduction for large-scale dynamical systems via equality constrained least squares, Journal of Computational and Applied Mathematics, 2010, 234 (8): 2420-2431.

[1] Gu Chuanqing, Bivariate Thiele-type matrix valued rational interpolants, Journal of Computational and Applied Mathematics (荷兰), 1997, 80: 71-82.

[2] Gu Chuanqing, Multivariate generalized inverse vector valued rational Interpolants, Journal of Computational and Applied Mathematics (荷兰),1997, 84: 137-146.

[3] Gu Chuanqing, Thiele-type and Lagrange-type generalized inverse rational interpolation for rectangular complex matrices, Linear Algebra and Its Applications (美国), 1999, 295: 7-30.

[4] Gu Chuanqing, Generalized inverse matrix Pade approximation on the basis of scalar products, Linear Algebra and Its Applications (美国) , 2001, 322: 141-167.

[5] Gu Chuanqing and Zhu Gongqin,Bivariate Lagrange-type vector valued rational interpolants, Journal of Computational Mathematics, 2002, 20(2): 207-216.

[6] Gu Chuanqing, A Practical Two-Dimensional Thiele-Type Matrix Pade Approximation, IEEE Trans. Automat.Control(美国, 二区), 2003, 48(12):2259-2263.

[7] Wang Jinbo and Gu Chuanqing, Vector valued Thiele-Werner-type osculatory rational interpolants, Journal of Computational and Applied Mathematics(荷兰),2004, 163(1):241-252.

[8] Gu Chuanqing, Matrix Pade-type Approximant and Directional Matrix Pad'e Approximant in the Inner Product Space, Journal of Computational and Applied Mathematics(荷兰),2004, 164-165:365-385.

[9]Chuanqing Gu, Jindong Shen, Function-valued Padé-type approximant and its applications in solving integral equations,Journal of Computational and Applied Mathematics(荷兰), 2008,221(1):114-131.

[10] Gu Chuanqing, Xue Huiyan, A Shift-Splitting Hierarchical Identification Method for Solving Lyapunov Matrix Equations, Linear Algebra and Its Applications(美国),2009,430(5-6):1517-1530.

[11]Gu Chuanqing, Zhaolu Tian, On the HSS iteration methods for positive definite Toeplitz linear systems, Journal of Computational and Applied Mathematics(荷兰), 2009,224(2): 709-718.

[12] Youtian Tao,Chuanqing Gu,A two-dimensional matrix Padé-type approximation in the inner product space, Journal of Computational and Applied Mathematics (荷兰), 2009,231(2):680-695.

[13] Yu’e An, Gu Chuanqing, Model reduction for large-scale dynamical systems via equality constrained least squares, Journal of Computational and Applied Mathematics (荷兰), 2010,234(8):2420-2431.



模型简化问题中的矩阵方程的数值迭代算法:

12.Gu Chuanqing, Xue Huiyan, A Shift-Splitting Hierarchical Identification Method for Solving Lyapunov Matrix Equations, Linear Algebra and Its Applications, 2009, 430 (5-6): 1517-1530.

13. Gu Chuanqing, Zhaolu Tian, On the HSS iteration methods for positive definite Toeplitz linear systems, Journal of Computational and Applied Mathematics, 2009, 224 (2): 709-718.

14. Gu Chuanqing, Hongjun Qian, Skew-symmetric methods for nonsymmetric linear systems with multiple right-hand sides, Journal of Computational and Applied Mathematics, 2009, 223 (2): 567-577.

Banach空间中非线性方程的迭代算法:

15. Xiuhua Wang, Jisheng Kou, Chuanqing Gu, Semilocal Convergence of Class of Modified Super-Halley Methods in Banach Spaces, Journal of Optimization Theory and Applications, 2012

(doi 10.1007/s10957-012-9985-9).

16.Lin Zheng, Chuanqing Gu*, Semilocal convergence of a sixth-order method in Banach spaces, Numerical Algorithms, 2012 (doi10.1007/s11075-012-9541-6).

17. Lin Zheng, Chuanqing Gu*, Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces, Numerical Algorithms, 2012, 59: 623-638.

18. Xiuhua Wang, Jisheng Kou, Chuanqing Gu, Semilocal convergence of a sixth-order Jarratt method in Banach spaces, Numerical Algorithms, 2011, 57: 441–456.

19. Xiuhua Wang, Chuanqing Gu, Jisheng Kou, Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces, Numerical Algorithms, 2011, 56: 497–516.

20. Xiuhua Wang, Jisheng Kou, Chuanqing Gu, A new modified secant-like method for solving nonlinear equations, Computers and Mathematics with Applications, 2010,60: 1633-1638.

上一条:崔洪泉

下一条:顾德永

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们