何海安


姓名:何 海安 (Haian HE)

职务/职称:副教授

邮箱haian@shu.edu.cn

研究领域:约化群的表示理论

Homepage (in English): https://orcid.org/0000-0001-6673-6983

教育经历

上海交通大学 数学与应用数学系 学士学位 (2009)

香港科技大学 数学系 博士学位 (2014)

工作经历

2014/10 - 2016/11 北京大学北京国际数学研究中心 博士后

2016/12 - 2022/02 上海大学理学院数学系 讲师

2022/03 - 上海大学理学院数学系 副教授

代表性科研项目

[1] 克莱因四元对称对的分支问题 国家自然科学基金青年项目 (2019) 主持

[2] 约化Lie群的限制表示的离散分解性 上海市自然科学基金面上项目 (2022) 主持

代表性学术论文

独立作者:

[1] Haian HE: Branching laws for non-complex simple Lie groups of type F_4. Taiwanese Journal of Mathematics, Volume 29 (2025), Number 5, Page 851–857.

[2] Haian HE: A discrete branching law for (G, G^{(Z/2Z)^n}). International Journal of Mathematics, Volume 36 (2025), Number 8, Article 2550016 (9 pages).

[3] Haian HE: A necessary condition for discrete branching laws for Klein four symmetric pairs. Journal of Algebra and Its Applications, Volume 22 (2023), Number 2, Article 2350039 (9 pages).

[4] Haian HE: Discrete decomposability of restrictions of (g, K)-modules for (G, Gσ) with an automorphism σ of even order. Geometriae Dedicata, Volume 215 (2021), Page 415–419.

[5] Haian HE: Kobayashi’s conjecture on associated varieties for Klein four symmetric pairs (E_{6(14)}, Spin(8, 1)). Journal of Lie Theory, Volume 30 (2020), Number 3, Page 705–714.

[6] Haian HE: A criterion for discrete branching laws for Klein four symmetric pairs and its application to E_{6(14)}. International Journal of Mathematics, Volume 31 (2020), Number 6, Article 2050049 (15 pages).

[7] Haian HE: Discretely decomposable restrictions of (g, K)-modules for Klein four symmetric pairs of exceptional Lie groups of Hermitian type. International Journal of Mathematics, Volume 31 (2020), Number 1, Article 2050001 (12 pages).

[8] Haian HE: Classification of Klein four symmetric pairs of holomorphic type for E_{7(25)}. Geometriae Dedicata, Volume 202 (2019), Page 153–164.

[9] Haian HE: Classification of Klein four symmetric pairs of holomorphic type for E_{6(14)}. Geometriae Dedicata, Volume 197 (2018), Page 77–89.

[10] Haian HE: On the reducibility of scalar generalized Verma modules of abelian type. Algebras and Representation Theory, Volume 19 (2016), Number 1, Page 147–170.

[11] Haian HE: Branching laws of parabolic Verma modules for non-symmetric polar pairs. Journal of Lie Theory, Volume 24 (2014), Number 4, Page 1047–1066.

非独立作者:

[1] Jiaying DING, Haian HE, Huangyuan PAN, and Lifu WANG: Branching laws of Klein four-symmetric pairs for Sp(n, R). Geometriae Dedicata, Volume 218 (2024), Number 3, Article 69 (13 pages).

[2] Haian HE, Jing-song HUANG, and Kayue Daniel WONG: Transfer of highest weight modules and small unipotent representations. Acta Mathematica Sinica, English Series, Volume 40 (2024), Number 3, Page 772–791.

[3] Yilian CHEN and Haian HE: On the discretely decomposable restrictions of (g,K)-modules for Klein four symmetric pairs. International Journal of Mathematics, Volume 34 (2023), Number 1, Article 2250094 (16 pages).

[4] Lin-Gen DING, Chao-Ping DONG, and Haian HE: Dirac series for E_{6(14)}. Journal of Algebra, Volume 590 (2022), Page 168-201.

[5] Haian HE, Toshihisa KUBO, and Roger ZIERAU: On the reducibility of scalar generalized Verma modules associated to maximal parabolic subalgebras. Kyoto Journal of Mathematics, Volume 59 (2019), Number 4, Page 787-813.


(最后更新日期:20251231())


上一条:丁洋

下一条:厚晓凤

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们