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Bayesian models of variability and regression for manifold data

Tom Fletcher EEHBFHBILKE

# 2 . Riemannian manifolds have proven to be effective representations of
nonlinear data from images, including image transformations and shape. A probabilistic
formulation for two closely related statistical models will be presented for Riemannian
manifold data: geodesic regression and principal geodesic analysis. These models
generalize linear regression and principal component analysis to the manifold setting.
The foundation of the approach is the particular choice of a Riemannian normal
distribution law as the likelihood model. Under this distributional assumption, least-
squares fitting of geodesic models is equivalent to maximum-likelihood estimation
when the manifold is a homogeneous space. A method for maximum-likelihood
estimation of the dispersion of the noise, as well as a novel method for Monte Carlo
sampling from the Riemannian normal distribution will be shown.
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Some properties of heat equation and Ricci flow and connection to some

geometric problem

7K M SREMMNKE Riverside 7K

FE: The following topics and connections to some current research will be
presented.

1. Gradient estimates for the heat equation and the Ricci flow and applications to
volume estimates etc, drawing results from Li-Yau, Hamilton and Perelman etc.

2. A few properties of global solutions of the heat equation on Euclidean space and
some manifolds.

We discuss recent results on Martin type representation formulas for ancient
solutions of the heat equation and dimension estimates of the space of these solutions
under some growth assumptions.

We will also present a new observation on the time analyticity of solutions of the
heat equation under natural growth conditions. One application is an "iff" solvability
condition of the backward heat equation, i.e. under what condition can one turn back
the clock in a simple diffusion process.

Part of the results are joint work with Fanghua Lin and Hongjie Dong.
Applications to mean curvature flows by Colding-Minicozzi will be mentioned.

3. Gradient estimates and relation with convergence issues of manifolds such as
Cheeger-Colding results.
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Vortex filament on symmetric Lie algebras and generalized bi-

Schrodinger flows
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Curvature regularization methods for image processing

BEM RERE

B E: The curvature regularities are well-known for providing strong priors in the
continuity of edges, which have been applied to a wide range of applications in image
processing and computer vision. However, these models are usually non-convex, non-
smooth, and highly nonlinear, the first-order optimality condition of which are high-
order partial differential equations. Thus, numerical computation is extremely
challenging. We study different curvature-based regularization methods for image
processing tasks, and develop efficient algorithms based on the alternating direction
method of multipliers. Numerical experiments on various image reconstruction
problems are considered including MR reconstruction, image restoration, inpainting
and segmentation.
AMANES: BEMN, KIPNF T FECAR BUR A B MR 7T . 2012 4F
SAFHOINI G VR R TR R i 2 A, 2012 4R 2 2015 SRR T IR
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Cauchy noise and impulse noise removal by nonlinear diffusion

equations

BLEE RRIELI R

& E: In this talk, a nonlinear diffusion equation is proposed to deal with Cauchy noise.
The main ingredients of the equation are a gray level based diffusivity that estimates
the amplitude of the noise and a classical gradient based diffusivity that controls the
anisotropic diffusion according to the image’s local structure. The proposed equation
has the nondivergence form, and its properties, including the existence, uniqueness, and
stability of solutions, are established by the notion of viscosity solution. The application
of the nonlinear diffusion equation for removing impulse noise is also discussed.
AN FEE, 5, 1982 4 07 A i, WEEEIHER, m/RE TIOR8y
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Structure-Preserving Algorithms of Quaternionic Eigenvalue Problem

and Applications to Color Image Processing
BEN TLHIHTER

FE: The eigenvalue problem of quaternion matrices becomes a new important
branch of numerical linear algebra. Quaternions were introduced to represent points in
space and thus can be used to describe spatial transforms, such as movement, extension,
spin, etc. Quaternion matrix theory and computation have been successfully applied to
color image processing, color face recognition, and color video reconstruction. Their
wonderful performances on preserving the color information have attracted attentions
from many researchers on imaging science. In this talk we intend to provide
fundamental material for young researchers of the quaternion matrix eigenvalue
problem. Firstly, we introduce the basic theory and methods of quaternion matrices with
starting from the origin of the right eigenvalue problem of quaternion matrices.
Secondly, we propose algorithms of solving quaternionic eigenvalue problem,
including the structure-preserving QR algorithm, the quaternion QR algorithms, etc.
Thirdly, we provide several quaternion-based models of color image processing, such
as two dimensional principle component analysis and color image inpainting.
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Variational and deep learning methods for image enhancement
R F ERWEKRE

$E: Image enhancement is a fundamental task in image processing. In this
presentation, I will introduce our recent work about image enhancement, including two
variational methods and a deep learning method. Based on the Retinex theory, we
propose two variational models to simultaneously estimate the illumination and the
reflectance from an observed image. Mathematically, we prove the existence of a
solution for the proposed models. Numerically, we derive efficient iterative algorithms
by utilizing the alternating direction method of multipliers method and give the
convergence analysis. Based on deep CNN, we also present a lightweight and efficient
Luminance-aware Pyramid Network (LPNet) to reconstruct normal-light images in a
coarse-to-fine strategy. Compared with other closely related image enhancement
methods, the proposed method achieves competitive results on both subjective and

objective assessments.

Dimension estimate of polynomial growth holomorphic functions on

Kahler manifolds

x| W R RE
FE: Let M be a complete noncompact Kahler manifold of nonnegative Ricci
curvature and maximal volume growth, we give an estimate of polynomial growth
holomorphic functions which is sharp in power.

Recent progress on eta invariants and eta forms

x| B BRRIMERE

FE: In 1975, Atiyah-Patodi-Singer developed an index theory for the Dirac
operator on compact manifolds with boundary. Their index formula involves a
contribution of the boundary, called the eta invariant. In 1989, Bismut-Cheeger
extended the eta invariant to the family case, called eta form, which is the boundary
contribution of the family index theorem with boundary. In this talk, we will discuss
the recent progress on eta invariants and eta forms. Some results in this talk are based
on works jointed with Xiaonan Ma.
AN X, ARG R A BOA R 2 2 T T T i, LS. BT
WA JURT, FERRERE S5y K 2, EEPRAAEEIAT] Invent. Math.,
Trans. AMS, Math. Z. ZREBLEZLE.



Nonnegative Low Rank Matrix Approximation and its Applications

Michael Ng FH K

B E: In this talk, we study low rank matrix approximation (NLRM) for
nonnegative matrices arising from many data mining and pattern recognition
applications. Our approach is different from classical nonnegative matrix factorization
(NMF) which has been studied for some time. For a given nonnegative matrix, the usual
NMF approach is to determine two nonnegative low rank matrices such that the
distance between their product and the given nonnegative matrix is as small as possible.
However, the proposed NLRM approach is to determine a nonnegative low rank matrix
such that the distance between such matrix and the given nonnegative matrix is as small
as possible. There are two advantages. (i) The minimized distance can be smaller. (i)
The proposed method can identify important singular basis vectors, while this
information may not be obtained in the classical NMF. Numerical results are reported
to demonstrate the performance of the proposed method. Several extensions and
research works are also presented.

The Softmax function, Potts model and variational neural networks
EER BEBRaKE

FEL: In this talk, we present our recent research on using variational models as layers
for deep neural networks (DNNs). We use image segmentation as an example. The
technique can also be used for high dimensional data classification as well. Through
this technique, we could integrate many well-know variational models for image
segmentation into deep neural networks. The new networks will have the advantages
of traditional DNNs. At the same time, the outputs from the new networks can also have
many good properties of variational models for image segmentation. We will present
some techniques to incorporate shape priors into the networks through the variational
layers. We will show how to design networks with spatial regularization and volume
preservation. We can also design networks with guarantee that the output shapes from
the network for image segmentation must be convex shapes/star-shapes. It is
numerically verified that these techniques can improve the performance when the true
shapes satisfy these priors. The ideas of these new networks is based on some
relationship between the softmax function, the Potts models and the structure of
traditional DNNs. We will explain this in detail which leads naturally to the newly
designed networks. This talk is based on joint works with Jun Liu, S. Luo and several
other collaborators.



Task driven medical image segmentation

WEF HRKE

On manifolds of nonnegative Ricci curvature with quadratically

asymptotically nonnegative curvature.
MR LR KRE
B E: In this talk, I will report some finiteness results on manifolds of
nonnegative Ricci curvature with quadratically asymptotically nonnegative curvature

under some suitable conditions, and also some related examples with infinite
topological type. This is a joint work with Huihong Jiang.
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Structure of degeneration limits of manifolds with bounded Bakry-Emery

Ricci curvature

K W BEIMERE
ME: We will present some joint works with Qi S Zhang about the generalization
of Cheeger-Colding-Tian-Naber’s results on the structure of Gromov-Hausdorff limits
of Riemannian manifolds. Our basic assumptions are that the Bakry-Emery Ricci
curvature of a sequence of manifolds is uniformly bounded from below, and the
gradient of the potential functions is uniformly bounded.



