2018 International Conference on Matrix Inequalities and Matrix Equations (MIME2018)

2018矩阵不等式及矩阵方程国际会议

Shanghai University

Shanghai, China

June 8-10, 2018

Sponsors

International Research Center for Tensor and Matrix Theory (IRCTMT)

Gaoyuan Discipline of Shanghai –Mathematics

Shanghai University

Organizing Committees

Local Organizing Committee

Qing-Wen Wang (Chair)

Nan Gao	Zhuo-Heng He	Xiaomei Jia
Olga Y. Kushel	Minghua Lin	Qiaohua Liu
Lingji Lou	Jiancai Sun	Fuping Tan
Yuchao Wang	Fayou Zhao	Jianjun Zhang
Qin Zhang	Anwa Zhou	Yunfei Zhou

Scientific Committee

Delin Chu National University of Singapore, Singapore
Chi-Kwong Li College of William and Mary, USA
Ren-Cang Li University of Texas at Arlington, USA
Yiu-Tung Poon Iowa State University, USA
Tin-Yau Tam Auburn University, USA
Qing-Wen Wang Shanghai University, China
Fuzhen Zhang Nova Southeastern University, USA
Yang Zhang University of Manitoba, Canada

Conference Venue

New Lehu Hotel, Shanghai University, 716 Jinqiu Road, Baoshan district, Shanghai 上海市宝山区锦秋路716号上海大学北大门乐乎新楼

All lectures will be held in the New Lehu Hotel 2nd building (乐乎新楼2号楼)

Accommodation

Campus accommodation:

New Lehu Hotel, Shanghai University, 716 Jinqiu Road, Baoshan district, Shanghai 上海市宝山区锦秋路716号上海大学北大门乐乎新楼

Alternative accommodation:

聚丰园宾馆,上海大学西门附近 汉庭酒店,上海大学北门附近

Transportation

From Pudong Airport to Shanghai University (Baoshan Campus)

1. By Metro: Pudong airport by Metro Line 2 to Jing'an Temple, change to Metro Line 7 to Shanghai University. (Total price is 8 RMB.)

2. By Taxi: Directly take taxi to 716 Jingqiu Road, Shanghai University (Baoshan Campus, North Gate). (Total price is about 230 RMB.)

From Hongqiao Airport to Shanghai University (Baoshan Campus)

1. By Metro: Hongqiao airport by Metro Line 2 to Jing'an Temple exchange to Metro Line 7 to Shanghai University. (Total price is 6 RMB.)

2. By Taxi: Directly take taxi to 716 Jingqiu Road, Shanghai University (Baoshan Campus, North Gate). (Total price is about 60 RMB.)

From Shanghai Railway Station to Shanghai University (Baoshan Campus)

1. By Metro Line 1 to Changshu Road exchange to Metro Line 7 to Shanghai University(Baoshan Campus). (Total price is 4 RMB.)

2. By Metro Line 3 to Zhenping Road exchange to Metro Line 7 to Shanghai University(Baoshan Campus). (Total price is 4 RMB.)

3. Directly take taxi to 716 Jingqiu Road, Shanghai University (Baoshan Campus, North Gate). (Total price is about 50 RMB.)

4. By Bus Route 58: Railway Station (Hengfeng Road) -> terminus (near 716 Jingqiu Road, Shanghai University, Baoshan Campus, North Gate). (Total price is 2 RMB.)

Contact

Prof. Qing-Wen Wang, Email: wqw@shu.edu.cn

Dr. Minghua Lin, Email: m_lin@i.shu.edu.cn

Dr. Jiancai Sun, Email: jcsun@shu.edu.cn

Dr. Zhuo-Heng He, Email: hzh19871126@126.com (Cell phone 15921810027)

Tel: +86-21-66134715(O); +86-13162033063(M) Fax: 86-21-66133292

Website: http://math.shu.edu.cn/MIME2018/

Program

Friday, June 8 9:00-19:00 Registration

Lobby of the Lehu Hotel 乐乎新楼1号楼一楼

17:30-19:30 Dinner

Saturday, June 9

Chair: Qing-Wen WangXuehai Hall(学海厅)-乐乎新楼2号楼二楼8:15-8:45 Opening CeremonyOpening remarks by Prof. Chi-Kwong LiOpening remarks by Prof. Gi-Sang CheonOpening remarks by Prof. Man-Duen ChoiWelcome speech by the dean of College of Sciences

8:45-9:00 Group Photo

Chair:	Chi-Kwong Li	Xuehai Hall(学海厅)-乐乎新楼2号楼二楼
9:00-9:	30 Speaker: Man-Duen Choi, University of	f Toronto, Canada (p. 10)
	Title: Assorted inequalities for positive	linear maps
9:30-1():00 Speaker: Fumio Hiai, Tohoku Universi	ity, Japan (p. 12)
	Title: Ando-Hiai type inequalities for	multivariate operator means

10:00-10:15 Coffee Break

Chair:	Tin-Yau Tam	Xuehai Hall(学海厅)-乐乎新楼2号楼二楼
10:15-1():45 Speaker: Yiu-T	ung Poon, Iowa State University, USA (p. 20)
	Title: A genera	ized Hölder type eigenvalue inequality
10:45-1 1	1:15 Speaker: Gi-Sa	ng Cheon, Sungkyunkwan University, Korea (p. 9)
	Title: A new as	ect of Riordan group via Krylov matrices
11:15-1 1	1:45 Speaker: Yong	lo Lim, Sungkyunkwan University, Korea (p. 17)
	Title: Inequalit	es for (symplectic) eigenvalues of the Cartan barycenter
11:45-12	2:15 Speaker: Yang	eng Su, Fudan University (p. 21)
	Title: Theory a	nd Computation of 2D Eigenvalue Problems

12:15-13:30 Lunch

Parallel Sessions. Session One

Chair: Y	Yimin Wei S	Siyuan Hall(思源厅)-乐乎新楼2号楼一楼
13:30-14:	:00 Speaker: Ren-Cang Li, University of Te	xas at Arlington, USA (p. 16)
	Title: Highly Accurate Doubling Algori	thm for Quadratic Matrix Equations from
	Quasi-Birth-And-Death Process	
14:00-14:	:30 Speaker: Lin-Zhang Lu, Xiamen Univer	rsity (p. 17)
	Title: Some inequalities for sector matri	ces
14:30-15:	:00 Speaker: Jianhong Xu, Southern Illinois	University Carbondale, USA (p. 24)
	Title: Some Characterizations for the Ex	sistence of Diagonal Lyapunov Solutions
15:00-15:	:30 Speaker: Pei-Chang Guo, China Univer-	sity of Geosciences (p. 11)
	Title: The Newton-like iteration for a qu	adratic vector equation arising in
	Markovian binary trees	

15:30-15:45 Coffee Break

Chair:	Ming	ghua Lin	Siyuan Hall(思源厅)-乐乎新楼2号楼一楼	
15:45-1	6:15	Speaker: Seok-zun Song, Jeju Nationa	l University, Korea (p. 21)	
		Title: Exponents of primitive matrices	and their linear preservers	
16:15-1	6:45	Speaker: Yaokun Wu, Shanghai Jiao T	ong University (p. 24)	
		Title: A simple multibody system on a	discrete circle	
16:45-1	7:15	Speaker: Zhi Chen, Nanjing Agricultur	ral University (p. 9)	
		Title: Permanents of doubly substocha	stic matrices	
17:15-1	7:45	Speaker: Peng-Ruei Huang, Hirosaki U	Jniversity, Japan (p. 12)	
		Title: Nonnegative roots of matrices		

17:45-19:00 Dinner

Parallel Sessions. Session Two

Chair:	Zhuo	-Heng He	Xuehai Ha	ll(学海厅)-乐乎新楼2号楼二楼
13:30-1	4:00	Speaker: Tin-Yau Tam, Auburn Unive	rsity, USA	(p. 22)
	r	Title: Cauchy's interlacing inequalities	s revisited	
14:00-1	4:30	Speaker: Ming-Cheng Tsai, National	Taipei Univ	ersity of Technology (p. 23)
	r	Title: Upper triangular similarity of up	oper triangu	lar matrices
14:30-1	5:00	Speaker: Pan-Shun Lau, The Hong Ko	ong Polytec	hnic University (p. 15)
	,	Title: The C-numerical range of a set of	of matrices	
15:00-1	5:30	Speaker: Edgar Pereira, Federal Univ.	of Rio Gra	nde do Norte, Brazil (p. 20)
	,	Title: The cyclic rank completion prob	olem with g	eneral blocks

15:30-15:45 Coffee Break

Chair:	Deli	n Chu	Xuehai Hall(学海	行)-乐乎新楼2号	}楼二楼
15:45-1	6:15	Speaker: Yang Zhang, University of M	Ianitoba, Canada	(p. 26)	
		Title: Automated reasoning in (semi-)	groups with powe	er-maps	
16:15-1	6:45	Speaker: Libin Li, Yangzhou Universi	ty (p. 16)		
		Title: From NIM equations to represent	ntation over fusion	rings	
16:45-1	7:15	Speaker: Xiaosong Sun, Jilin Universi	ity (p. 22)		
		Title: Some applications of matrix the	ory to affine algeb	raic geometry	
17:15-1	7:45	Speaker: Mahendra Gupta, Indian Inst	titute of Technolog	gy Madras, India	(p. 11)
		Title: A simple proof for the existence	e of Jordan form		

17:45-19:00 Dinner

Sunday, June 10

Parallel Sessions. Session One

Chair:	Ren-Cang Li	Siyuan Hall(思源厅)-乐乎新楼2号楼一楼
8:00-8:	30 Speaker: Yimin Wei, Fudan Univer	rsity (p. 23)
	Title: Solving Multi-linear Systems	s with M-Tensors
8:30-9:	00 Speaker: Zhigang Jia, Jiangsu Norr	mal University (p. 13)
	Title: A New Real Structure-preser	ving Quaternion QR Algorithm
9:00-9:	30 Speaker: Qingxiang Xu, Shanghai	Normal University (p. 25)
	Title: A new kind of common uppe	er bound of two Hermitian positive semi-definite
	matrices	
9:30-10):00 Speaker: Chuan-Long Wang, Taiy	vuan Normal University (p. 23)
	Title: Two Optimal Low-Rank M	atrix Approximation Algorithms For Matrix
	Completion	

10:00-10:15 Coffee Break

Chair: Ya	ang Zhang	Siyuan Hall(思源厅)-乐乎新楼2号楼一楼
10:15-10:4	15 Speaker: Seung-Hyeok Kye, Seoul Na	tional University, Korea (p. 14)
	Title: Lengths of separable states	
10:45-11:1	15 Speaker: Hiromichi Ohno, Shinshu Ui	niversity, Japan (p. 18)
	Title: Unitary equivalence classes of o	ne-dimensional quantum walks
11:15-11:4	15 Speaker: Hua-Lin Huang, Huaqiao Ur	iversity (p. 12)
	Title: The Hurwitz problem on compo	sitions of quadratic forms
11:45-12:1	15 Speaker: Jianlong Chen, Southeast Un	iversity (p. 9)
	Title: Core and dual core inverses of n	norphisms

12:15-13:30 Lunch

Parallel Sessions. Session Two

Chair:	Fuzhen Zhang	Xuehai Hall(学海厅)-乐乎新楼2号楼二楼
8:00-8:	30 Speaker: Chi-Kwong I	i, College of William and Mary, USA (p. 15)
	Title: Ranks of quantu	n states with prescribed reduced states
8:30-9:	00 Speaker: Hiroyuki Osa	ka, Ritsumeikan University, Japan (p. 19)
	Title: Maps preserving	operator means
9:00-9:	30 Speaker: Daryl Q. Gra	nario, Auburn University, USA (p. 10)
	Title: The sum of two	complex orthogonal matrices
9:30-10	:00 Speaker: Takeaki Yar	nazaki, Toyo University, Japan (p. 26)
	Title: On a generaliz	tion of the Aluthge transform in the viewpoint of the operator
	means	

10:00-10:15 Coffee Break

Chair: Tin-Yau TamXuehai Hall(学海厅)-乐乎新楼2号楼二楼10:15-10:45Speaker: Fuzhen Zhang, Nova Southeastern University, USA (p. 26)

Title: Eigenvalue inequalities of the product of a Hermitian matrix and a positive definite matrix

- **10:45-11:15** Speaker: Diane C.P. Pelejo, Univ. of the Philippines Diliman, Philippines (p. 19) Title: Sign Pattern Matrices that Allow or Require Algebraic Positivity
- **11:15-11:45** Speaker: Zhenyun Peng, Guilin University of Electronic Technology (p. 20) Title: Iteration methods to solve multiple constrained least-squares problem
- 11:45-12:15 Speaker: Honghai Li, Jiangxi Normal University (p. 15)Title: On the first and second eigenvalue of finite and infinite uniform hypergraphs

12:15-13:30 Lunch

Chair: Gi-Sang Cheon

Xuehai Hall(学海厅)	-乐乎新楼2号楼二楼
------------------	------------

13:30-14:00 Speaker: Delin Chu, National University of Singapore, Singapore (p. 10) Title: A Fast Frequent Directions Algorithm for Low Rank Approximation

- 14:00-14:30 Speaker: Xiao-Qing Jin, University of Macau (p. 13)Title: A Riemannian inexact Newton-CG method for constructing nonnegative matrix with prescribed realizable spectrum
- **14:30-15:00** Speaker: Zhongshan Li, Georgia State University, USA (p. 17) Title: Sign patterns that allow diagonalization
- **15:00-15:30** Speaker: Dragana Cvetković Ilić, University of Niš, Serbia (p. 13) Title: Generalizations of some recent results on various systems of matrix equations

15:30-15:45 Coffee Break

Chair: Y	Yiu-Tung Poon	Xuehai Hall(学海厅)-乐乎新楼2号楼二楼
15:45-16	:15 Speaker: Abbas Salemi, Shahid Baho	nar University of Kerman, Iran (p. 21)
	Title: Majorization and linear preserv	ers definite matrix
16:15-16	:45 Speaker: Ngai-Ching Wong, National	Sun Yat-sen University (p. 24)
	Title: Random Toeplitz operators and	eigenvalue distribution
16:45-17	:15 Speaker: Olga Kushel, Shanghai Univ	versity (p. 14)
	Title: Generalized Lyapunov diagonal	l stability
17:15-17	:30 Concluding remarks	

17:30-19:00 Dinner

Goodbye

Abstracts

Jianlong Chen

jlchen@seu.edu.cn

Southeast University

Title: Core and dual core inverses of morphisms

Abstract: Core and dual core inverses were introduced by Baksalary and Trenkler in 2010. Rakic etc generalized these notations to ring cases. In this talk, we will introduce the core and dual core inverses of a morphism in a category. There are three parts: 1. Core and dual core inverse of the sum of morphisms. 2. Core and dual core inverse of morphism with factorization. 3. Core and dual core inverse of morphism with kernel.

Zhi Chen

chenzhi@njau.edu.cn

Nanjing Agricultural University

Title: Permanents of doubly substochastic matrices

Abstract: Let $\omega_{n,k}$ denote the convex polytope of doubly substochastic matrices with sub-defect k. Let h(A) and l(A) denote the maximum and minimum diagonals of $A \in \omega_{n,k}$ respectively. In this talk, we give the relation between the permanent function and the maximum (minimum) diagonals. More specifically, we give the upper bound of the permanent function on $\omega_{n,k}$ in terms of the h-function. We also study the upper bound of the permanent function on both the product and direct product of matrices in $\omega_{n,k}$.

Gi-Sang Cheon

gscheon@skku.edu

Sungkyunkwan University, Korea

Title: A new aspect of Riordan group via Krylov matrices

Abstract: In this talk, we use a new angle to interpret Riordan matrices as Krylov matrices. We then provide a new insight that can be useful for an extension of the group of Riordan matrices called the Riordan group. Moreover, we study Lie algebras for the extended Riordan groups and we extend our theory to the ω -Riordan group which is a generalization of the Riordan group.

Man-Duen Choi

choi@math.toronto.edu

University of Toronto, Canada

Title: Assorted inequalities for positive linear maps

Abstract: Since 1970's I worked on this topic. Now, it is the right time to re-examine some known results with new meanings and new values.

Delin Chu

matchudl@nus.edu.sg

National University of Singapore, Singapore

Title: A Fast Frequent Directions Algorithm for Low Rank Approximation

Abstract: Recently a deterministic method, frequent directions (FD) is proposed to solve the high dimensional low rank approximation problem. It works well in practice, but experiences high computational cost. In this talk, we establish a fast frequent directions algorithm for the low rank approximation problem, which implants a randomized algorithm, sparse subspace embedding (SpEmb) in FD. This new algorithm makes use of FD's natural block structure and sends more information through SpEmb to each block in FD. We prove that our new algorithm produces a good low rank approximation with a sketch of size linear on the rank approximated.

Its effectiveness and efficiency are demonstrated by the experimental results on both synthetic and real world datasets.

Daryl Q. Granario dqg0001@auburn.edu Auburn University, USA

Title: The sum of two complex orthogonal matrices

Abstract: A matrix $Q \in M_n(\mathbb{C})$ is said to be orthogonal if $Q^T Q = I_n$. It is known that every matrix $A \in M_n(\mathbb{C})$ can be expressed as a finite sum of complex orthogonal matrices. Using a certain matrix equation and some results in the theory of canonical forms, we characterize matrices in $M_n(\mathbb{C})$ that can be expressed as a sum of two complex orthogonal matrices.

Pei-Chang Guo

peichang@cugb.edu.cn China University of Geosciences

Title: The Newton-like iteration for a quadratic vector equation arising in Markovian binary trees

Abstract: For the nonlinear matrix equation arising in Markovian binary trees, the minimal nonnegative solution can be found by Newton-like methods. Starting with zero initial guess or some other suitable initial guess, the Newton-like iteration provides a monotonically increasing sequence of nonnegative vectors converging to the minimal nonnegative solution. Numerical examples illustrate the effectiveness of the Newton-Shamanskii iteration.

Mahendra Kumar Gupta

mahendra14389@gmail.com

Indian Institute of Technology Madras, India

Title: A simple proof for the existence of Jordan form

Abstract: In this work, we provide a new and simple proof for the following theorem which is the main result of the paper.

Theorem 0.1. Let λ be an eigenvalue of $A \in \mathbb{R}^{n \times n}$ of algebraic multiplicity a and geometric multiplicity g. Let m be the least positive integer such that $rank(\lambda I - A)^m = rank(\lambda I - A)^{m+1}$. Then there exists a set $B = \{x_{jk}, 1 \le j \le g, 1 \le k \le m\}$ of L.I. vectors such that

$$(\lambda I - A)x_{j1} = 0, \qquad \forall \ 1 \le j \le g \tag{1a}$$

$$(\lambda I - A)x_{jk} = x_{j(k-1)}: \quad k > 1$$
 (1b)

and more importantly, |B| = a.

As a corollary of the theorem above, existence of the Jordan from is proved. The proof is constructive for computation of Jordan blocks, eigenvectors and generalized eigenvectors. All results are provided for general case. In order to prove Theorem 0.1, we use the following matrix properties. Independent proofs of some of these properties are also given.

- 1. Rank Nullity theorem.
- 2. Elementary row/column transformations.
- 3. $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$, then

$$rank(AB) \ge rankA + rankB - n.$$

4. If $rank(A^i) = rank(A^{i+1})$ for some particular *i* then

$$rank(A^i) = rank(A^{i+k}) \text{ for all } k \in \mathbb{N}.$$

5. Let matrix $A \in \mathbb{R}^{n \times n}$ be a singular matrix and if

$$rankA = rankA^2$$
,

then algebraic multiplicity for 0 eigenvalue is equal to geometric multiplicity.

6. Ax = b is not solvable then $rank \begin{bmatrix} A & b \end{bmatrix} = rankA + 1$.

Fumio Hiai

hiai.fumio@gmail.com

Tohoku University, Japan

Title: Ando-Hiai type inequalities for multivariate operator means

Abstract: We present several Ando-Hiai type inequalities for *n*-variable operator means for positive invertible operators. Ando-Hiai's inequalities given here are not only of the original type but also of the complementary type and of the reverse type involving the generalized Kantorovich constant. This is joint work with Yuki Seo and Shuhei Wada.

Hua-Lin Huang

hualin.huang@hqu.edu.cn

Huaqiao University

Title: The Hurwitz problem on compositions of quadratic forms

Abstract: We shall give an introduction to the Hurwitz problem on compositions of quadratic forms and report some recent progress via an approach of Hopf algebras and tensor categories.

Peng-Ruei Huang

h16ds202@hirosaki-u.ac.jp

Hirosaki University, Japan

Title: Nonnegative roots of matrices

Abstract: The root of matrices is a classical problem in matrix theory which can be traced back to the work of Arthur Cayley in 1858. However, not much is known about the question of existence of

entrywise nonnegative square roots for a nonnegative matrix. We will consider the nonnegative roots of rank-one matrices and circulant marices, etc.

Dragana Cvetković Ilić dragana@pmf.ni.ac.rs University of Niš, Serbia

Title: Generalizations of some recent results on various systems of matrix equations

Abstract: We will discuss the system of matrix equations $A_iXB_i = C_i$, $i = \overline{1,4}$ and present some necessary and sufficient conditions for its solvability as well as an expression for the general solution. The presented solvability conditions are purely algebraic and the method used in the proof allows a generalization of the obtained results to some more general structures such as algebras of bounded linear operators or rings, under only some additional assumptions concerning regularity. As corollaries we get generalizations of some recent results that involve solving some other systems of matrix equations.

Zhigang Jia

zhgjia@jsnu.edu.cn

Jiangsu Normal University

Title: A New Real Structure-preserving Quaternion QR Algorithm

Abstract: New real structure-preserving decompositions are introduced to develop fast and robust algorithms for the (right) eigenproblem of general quaternion matrices. Under the orthogonally JRS-symplectic transformations, the Francis JRS-QR step and the JRS-QR algorithm are firstly proposed for JRS-symmetric matrices and then applied to calculate the Schur forms of quaternion matrices. A novel quaternion Givens matrix is defined and utilized to compute the QR factorization of quaternion Hessenberg matrices. An implicit double shift quaternion QR algorithm is presented with a technique for automatically choosing shifts and within real operations. Numerical experiments are provided to demonstrate the efficiency and accuracy of newly proposed algorithms.

Xiao-Qing Jin

xqjin@umac.mo

University of Macau

Title: A Riemannian inexact Newton-CG method for constructing nonnegative matrix with prescribed

realizable spectrum

Abstract: In this talk, we consider the inverse eigenvalue problem of constructing a nonnegative matrix with prescribed realizable spectrum.

Problem I. Given an *n*-tuple $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$, which is a realizable spectrum for nonnegative matrices, find an *n*-by-*n* nonnegative matrix *C* such that its eigenvalues are $\lambda_1, \lambda_2, \dots, \lambda_n$.

Olga Kushel

kushel@mail.ru

Shanghai University

Title: Generalized Lyapunov diagonal stability

Abstract: Here we consider a real $n \times n$ matrix A, which satisfies the following generalized Lyapunov equation:

$$\sum_{i,j=0}^{n-1} c_{ij} (\mathbf{A}^T)^i \mathbf{H} \mathbf{A}^j = \mathbf{Q}, \qquad c_{ij} = c_{ji} \in \mathbb{R}$$

for some symmetric positive definite matrices H and Q. Such matrices are known to have their spectra inside a stability region $\mathfrak{D} \subset \mathbb{C}$, defined by the above equation. In this talk, we consider the following question: when solvability of a generalized Lyapunov equation within a given subclass of symmetric positive definite matrices leads to some more specific properties of matrix spectra? A well-known partial case here is Lyapunov diagonal stability (a matrix A is called Lyapunov diagonally stable if

$$\mathbf{D}\mathbf{A} + \mathbf{A}^T\mathbf{D} = \mathbf{Q}$$

for some positive diagonal matrix \mathbf{D} and symmetric positive definite matrix \mathbf{Q}) which implies *D*-stability (a matrix \mathbf{A} is called *D*-stable if $\mathbf{D}\mathbf{A}$ is stable for every positive diagonal matrix \mathbf{D}).

Seung-Hyeok Kye kye@snu.ac.kr Seoul National University, Korea

Title: Lengths of separable states

Abstract: A state is called *separable* when it is decomposed into a sum of pure product states. A decomposition is said to be *optimal* when the number of pure product states in the decomposition is minimal, and this minimal number is called the *length* of the separable state. It is known that the length of a $2 \otimes 2$ or $2 \otimes 3$ state is equal to the maximum of ranks of the state and its partial transpose, but this is not true in higher dimensional systems. In the $3 \otimes 3$ and $2 \otimes 4$ systems, separable states with lengths ten are known. Note that the lengths are even strictly greater than the whole dimensions. In

this talk, we exhibit one parameter family of three qubit separable states whose length are ten. Those examples appear on the boundary between separable states and entangled states.

Pan-Shun Lau

panlau@connect.hku.hk

The Hong Kong Polytechnic University

Title: The C-numerical range of a set of matrices

Abstract: For $n \times n$ matrices C and A, the C-numerical range of A is defined by

$$W_C(A) := \{ \operatorname{tr}(CU^*AU) : U \text{ is unitary} \}.$$

Let \mathcal{F} be a set of $n \times n$ matrices. In this talk, we study the union of the *C*-numerical ranges of the matrices in the set \mathcal{F} , denoted by $W_C(\mathcal{F})$. We obtain basic algebraic and topological properties of $W_C(\mathcal{F})$, and show that there are connections between the geometric properties of $W_C(\mathcal{F})$ and the algebraic properties of *C* and the matrices in \mathcal{F} . We shall also discuss the star-shapedness of $W_C(\mathcal{F})$ when \mathcal{F} is convex.

Chi-Kwong Li

ckli@math.wm.edu

College of William and Mary, USA

Title: Ranks of quantum states with prescribed reduced states

Abstract: Let \mathcal{M}_n be the set of $n \times n$ complex matrices. In this note we determine all the possible ranks of a bipartite state in $\mathcal{M}_m \otimes \mathcal{M}_n$ with prescribed reduced states in the two subsystems. The results are used to determine the Choi rank of quantum channels $\Phi : \mathcal{M}_m \to \mathcal{M}_n$ sending I/m to a specific state $\sigma_2 \in \mathcal{M}_n$.

This is joint work with Yiu-Tung Poon (Iowa State University) and Xuefeng Wang (Ocean University of China).

Honghai Li

lhh@jxnu.edu.cn

Jiangxi Normal University

Title: On the first and second eigenvalue of finite and infinite uniform hypergraphs

Abstract: The spectral gap of a graph is intimately related to its expansion properties, and more precisely the graph with higher spectral gap is more expanding. Note that regular graphs have its degree as its largest eigenvalue, the well-known Alon-Boppana Theorem answers for regular graphs

how small the second largest eigenvalue can be. Using the eigenvalues of the adjacency tensor associated with hypergraphs, lower bounds for the first and the second eigenvalue of uniform regular hypergraphs are obtained. One of these bounds is a generalization of the Alon-Boppana Theorem to hypergraphs.

Libin Li

lbli@yzu.edu.cn Yangzhou University

Title: From NIM equations to representation over fusion rings

Abstract: In this talk, we shall prove that the rank of the irreducible NIM-modules over a near-group fusion ring is no more than the rank of the near-group ring. As an application, we show that the irreducible NIM-modules over the fusion ring of rank 2 correspond to an equivalence class of some non-negative integer matrices of order 2.

Ren-Cang Li

rcli@uta.edu

University of Texas at Arlington, USA

Title: Highly Accurate Doubling Algorithm for Quadratic Matrix Equations from Quasi-Birth-And-Death Process

Abstract: One of the most fundamental quadratic matrix equations in the quasi-birth-and-death process (QBD) is

$$A_0 + A_1 X + A_2 X^2 = X,$$

where A_0 , A_1 and A_2 are blocks in an infinite block-tridiagonal transition matrix and A_i (i = 0, 1, 2)are $n \times n$ nonnegative matrices. In the application, $I - A_0 - A_1 - A_2$ is irreducible and singular, and, in particular, $(A_0 + A_1 + A_2)\mathbf{1_n} = \mathbf{1_n}$, where $\mathbf{1_n}$ (often simply 1 when its dimension is clear from the context) is the column *n*-vector of all ones. It is known that the QBD equation has a unique minimal nonnegative solution Φ for which $\Phi \mathbf{1} \leq \mathbf{1}$. This solution Φ is the one of interest. In this talk, we will present a highly accurate doubling algorithm to compute the minimal nonnegative solution with deserved entrywise accuracy.

Zhongshan Li

zli@gsu.edu

Georgia State University, USA

Title: Sign patterns that allow diagonalization

Abstract: A sign pattern (matrix) is a matrix whose entries are from the set $\{+, -, 0\}$. A square sign pattern \mathcal{A} is said to allow diagonalization if there is a diagonalizable real matrix whose entries have signs specified by the corresponding entries of \mathcal{A} . Characterization of sign patterns that allow diagonalization has been a long-standing open problem. It is known that a sign pattern allows diagonalization if and only if it allows rank-principality. In this talk, we establish some new necessary/sufficient conditions for a sign pattern to allow diagonalization, and explore possible ranks of diagonalizable matrices with a specified sign pattern. In particular, it is shown that every irreducible sign pattern with minimum rank 2 allows diagonalization at rank 2 and also at the maximum rank. Sign patterns whose maximal zero submatrices are strongly disjoint are shown to allow diagonalization with the maximum rank.

This is joint work with Xinlei Feng, Wei Gao, Frank Hall, Guangming Jing, and Chris Zagrodny.

Yongdo Lim

ylim@skku.edu

Sungkyunkwan University, Korea

Title: Inequalities for (symplectic) eigenvalues of the Cartan barycenter

Abstract: We establish log-majorizations for the (symplectic) eigenvalues of the Cartan barycenter of integrable probability Borel measures on the Cartan-Hadamard manifold of positive definite matrices. This leads a version of Jensen's inequality for geometric integrals of matrix-valued integrable random variables.

This is joint work with Fumio Hiai.

Lin-Zhang Lu

lzlu@xmu.edu.cn

Xiamen University

Title: Some inequalities for sector matrices

Abstract: If A is a sector matrix, i.e., the numerical rang of A

$$W(A) = \{x^*Ax | x \in \mathbb{C}^n, x^*x = 1\}$$
17

is contained in a sector:

$$S_{\alpha} = \{ z \in \mathbb{C}^n : \mathscr{R}z > 0, |\mathscr{J}z| \le \mathscr{R}z \tan(\alpha) \}$$

for some $\alpha \in [0, \pi/2)$, then we have the following two results (three inequalities).

1) Let $f : [0,\infty) \to [0,\infty)$ be a concave function and $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ be a complex partitioned matrix where A_{11} and A_{22} are square. If A is normal, then

$$||f(|A|)|| \le ||f(sec(\alpha)|A_{11}|)|| + ||f(sec(\alpha)|A_{22}|)||$$
(1)

for any unitarily invariant norm $|| \cdot ||$. This inequality improves a recent result given by Zhao and Ni in [Lin. Mult. Alg.doi:10.1080/03081087.2017.1301359].

2) Let $A \in \mathbb{M}_n(\mathbb{M}_k)$, then

$$tr|A| + ||A||_q \ge \cos(\alpha)||tr_1A||_q + \cos(\alpha)||tr_2A||_q;$$
(2)

$$(tr|A|)^{nk} + det|A| \ge \cos^{nk}(\alpha)|det(tr_1A)|^n + \cos^{nk}(\alpha)|det(tr_2A)|^k.$$
(3)

where tr_1 and tr_2 stand for the first and second partial trace, respectively, a notion form quantum information theory.

When A is a density matrix, (2) is the inequality

$$1 + ||A||_q \ge ||tr_1A||_q + ||tr_2A||_q,$$

presented by Audenaert in [J.Math.Phys. 48(2007)]

When A is a density matrix, (3) is the inequality

$$1 + det(A) \ge det(tr_1A)^n + det(tr_2A)^k.$$

presented by Lin in [Canad. Math. Bull. 59(2016)].

Hiromichi Ohno

h_ohno@shinshu-u.ac.jp

Shinshu University, Japan

Title: Unitary equivalence classes of one-dimensional quantum walks

Abstract: Quantum walks can be considered as a quantum analog of classical random walks and have been studied in various fields, such as quantum information theory and quantum probability theory. A quantum walk is defined by a pair $(U, \{\mathcal{H}_v\}_{v \in V})$, in which V is a countable set, $\{\mathcal{H}_v\}_{v \in V}$ is a family of separable Hilbert spaces, and U is a unitary operator on $\mathcal{H} = \bigoplus_{v \in V} \mathcal{H}_v$. In this talk, we discuss unitary equivalence classes of one-dimensional quantum walks, in which $V = \mathbb{Z}$ and $\mathcal{H}_v = \mathbb{C}^2$.

Hiroyuki Osaka

osaka@se.ritsumei.ac.jp

Ritsumeikan University, Japan

Title: Maps preserving operator means

Abstract: Let σ be a non-rivial operator mean in the sense of Kubo and Ando and let OM^1_+ the set of normalized positive operator monotone functions on $(0, \infty)$. In this talk, we discuss the problem to determine $f \in OM^1_+$ which satisfies

$$f(A\sigma B) \le f(A)\sigma f(B)$$

for all positive operators A and B. We give some criteria for this function f to be trivial, that is f(t) = 1 or f(t) = t. We also establish a condition for f and σ to satisfy

$$f(A\sigma B) = f(A)\sigma f(B)$$

for all positive operators A and B. More precisely, if $\lim_{t\to 0} (1\sigma t) = 0$, then the above equality holds if and only if f and $1\sigma t$ are functions which correspond to the harmonic mean.

Diane Christine P. Pelejo

dcpelejo@math.upd.edu.ph

University of the Philippines Diliman, Philippines

Title: Sign Pattern Matrices that Allow or Require Algebraic Positivity

Abstract: A square matrix M with real entries is said to be positive, written M > 0, if all its entries are positive. On the other hand M is said to be *algebraically positive* if there exists a real polynomial p such that all entries of the matrix p(M) > 0. Algebraic positivity can be viewed as a generalization of the concepts of positivity, eventual positivity and primitivity.

A square sign pattern matrix S is a matrix whose entries are in $\{+, -, 0\}$. We say that S allows algebraic positivity if there is an algebraically positive matrix M whose sign pattern class is S. We say that S requires algebraic positivity if any matrix M, having sign pattern class S, is algebraically positive.

Motivated by open problems raised in the work of Kirkland, Qiao and Zhan (2016) on algebraically positive matrices, we look at some conditions that will guarantee that a sign pattern matrix allows or requires algebraic positivity.

Zhenyun Peng

yunzhenp@163.com

Guilin University of Electronic Technology

Title: Iteration methods to solve multiple constrained least-squares problem

Abstract: In this report, augmented lagrangian method (ALM), alternating direction method of multipliers (ADMM) andInexact alternating direction method of multipliers (IADMM) to compute multiple constrained least-squares solution of the matrix equation AXB = C are derived. Numerical comparison of these methods given. Problems that need to be studied in further are listed.

Edgar Pereira

edgar@ccet.ufrn.br

Federal University of Rio Grande do Norte, Brazil

Title: The cyclic rank completion problem with general blocks

Abstract: We present an upper bound for the minimal completion rank of a partial matrix P whose block pattern is a single cycle of size 2k with specified blocks A_1, \dots, A_{2k} . The bound becomes quite sharp when k increases, under certain conditions. This extends previous results in which the specified blocks A_1, \dots, A_{2k} were assumed regular.

The upper bound is constructed from invariants associated with the canonical form of the given partial matrix, under row and column operations. These invariants can be expressed in terms of ranks of certain matrices constructed directly from the data blocks A_1, \dots, A_{2k} , independently of P being in canonical form. Some examples illustrate the presented theory. This is joint work with Nir Cohen.

Yiu-Tung Poon

ytpoon@iastate.edu

Iowa State University, USA

Title: A Generalized Hölder Type Eigenvalue Inequality

Abstract: In this note, we prove that if A_1, \ldots, A_m are $n \times n$ contractive matrices, $r \ge 1$ and $p_1, \ldots, p_m > 0$ with $\frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_m} = 1$, then

$$\prod_{j=1}^{k} \left(1 - \lambda_j (|A_1 \cdots A_m|)^r\right) \ge \prod_{i=1}^{m} \prod_{j=1}^{k} \left(1 - \lambda_j (|A_i|)^{rp_i}\right)^{\frac{1}{p_i}}$$

for each k = 1, 2, ..., n. This generalizes an inequality due to Hua and Marcus. This is joint work with Jun-Tong Liu and Qing-Wen Wang.

Abbas Salemi

salemi@uk.ac.ir

Shahid Bahonar University of Kerman, Iran

Title: Majorization and linear preservers

Abstract: Let X and Y be real $n \times m$ matrices. We say that X is circulant matrix majorized by Y and write $X \prec_c Y$, if X = QY for some circulant doubly stochastic matrix $Q \in M_n(\mathbb{R})$. A linear operator $T: M_{n,m}(\mathbb{R}) \longrightarrow M_{n,m}(\mathbb{R})$ is said to be a preserver of \prec_c , if $TX \prec_c TY$ whenever $X \prec_c Y$ for $X, Y \in M_{n,m}(\mathbb{R})$. In this lecture, we characterize linear preservers of \prec_c on real rectangular matrices. Also, we present a simple method to prove Ando's Theorem [Linear Algebra Appl. 118 (1989) 163-248] and several known results. Finally, we consider a group majorization and its linear preservers.

This is joint work with Shiva Mohtashami and Mohammad Soleymani.

Seok-zun Song

szsong@jejunu.ac.kr

Jeju National University, Korea

Title: Exponents of primitive matrices and their linear preservers

Abstract: An $n \times n$ matrix A is said to be *primitive* if A^k has all nonzero entries for some positive integer k. A primitive matrix A is said to have *exponent* k if A^k has all nonzero entries and A^s has a zero entry if s < k. We consider the exponents of primitive matrices and the subsets of primitive matrices with fixed exponent. We investigate linear preservers of these subsets of primitive matrices defined by their exponents. In particular, we shall characterize linear operators that preserve subsets with exponents 1 and 2, and those that preserve subsets with exponents $n^2 - 2n + 2$ and $n^2 - 2n + 1$. We also characterize those linear operators that strongly preserve subsets with exponents 2, $n^2 - 2n + 2$ or $n^2 - 2n + 1$.

This is joint work with LeRoy B. Beasley (Utah State University, USA).

Yangfeng Su

yfsu@fudan.edu.cn

Fudan University

Title: Theory and Computation of 2D Eigenvalue Problems

Abstract: The 2D eigenvalue problem (2dEVP) is a class of the double eigenvalue problems first

studied by Blum and Chang in 1970s. The 2dEVP seeks scalars λ, μ , and a corresponding vector x satisfying the following equations

$$Ax = \lambda x + \mu Cx,$$
$$x^{H}Cx = 0,$$
$$x^{H}x = 1,$$

where A and C are Hermitian and C is indefinite. We show the connections between 2dEVP with well-known numerical linear algebra and optimization problems such as quadratic programming, the distance to instability and H_{∞} -norm. We will discuss (1) fundamental properties of 2dEVP including well-posedness, types and regularity, (2) perturbation theory and (3) numerical algorithms with backward error analysis.

Xiaosong Sun

sunxs@jlu.edu.cn

Jilin University

Title: Some applications of matrix theory to affine algebraic geometry

Abstract: Affine algebraic geometry is a branch of algebraic geometry which focuses on automorphisms of affine varieties (especially affine spaces). There are several notable problems in this field such as the Jacobian conjecture and the tame generators problem. In this talk, I will introduce some applications of matrix theory to affine algebraic geometry, especially to the Jacobian conjecture and the tame generators problem.

Tin-Yau Tam tamtiny@auburn.edu Auburn University, USA

Title: Cauchy's interlacing inequalities revisited

Abstract: We will discuss Cauchy's interlacing inequalities for the eigenvalues of a Hermitian matrix and its principle submatrices. We will discuss their relatives, for example, interlacing inequalities for the singular values of a complex matrix and its submatrices. We seek a possible unified treatment for different interlacing inequalities.

Ming-Cheng Tsai

mctsai2@mail.ntut.edu.tw National Taipei University of Technology

Title: Upper triangular similarity of upper triangular matrices

Abstract: The upper triangular similarity class of a upper triangular matrix is determined by those of some strictly upper triangular matrices. This talk will give a survey on the progress of classifying the upper triangular similarity classes of strictly upper triangular matrices. In particular, a "nice" possible canonical form will be chosen.

This is joint work with Huajun Huang, Meaza Bogale.

Chuan-Long Wang clwang2180126.com Taiyuan Normal University

Title: Two Optimal Low-Rank Matrix Approximation Algorithms For Matrix Completion

Abstract: In this paper, we mainly propose two optimal low-rank matrix approximation algorithms for the matrix completion problem based on the minimum distance between the feasible matrix and its projection onto the r-dimensional manifold (where r is less than or equal to the rank of the completion matrix). The main idea is to search an optimal feasible matrix in the feasible matrix set by multi-step iterations. If the minimum distance is equal to zero, then the feasible matrix is no other than the optimal low-rank matrix to the matrix completion problem; otherwise, the dimension of the manifold changes to (r+1) automatically, and the above process of searching the optimal feasible matrix is repeated. In theory, we analysis the convergence and convergent rate of the new algorithms in detail, and prove that the new algorithms are better than the orthogonal rank-one matrix pursuit (OR1MP) algorithm in precision. Finally, some numerical experiments and image recovery results show the algorithms are more effective in CPU time and precision than the orthogonal rank-one matrix pursuit, and more efficient than the augmented Lagrange multiplier algorithm when the observation ratio is lower.

Yimin Wei

ymwei@fudan.edu.cn

Fudan University

Title: Solving Multi-linear Systems with M-Tensors

Abstract: This talk is concerned with solving some structured multi-linear systems, especially

focusing on the equations whose coefficient tensors are M-tensors, or called M-equations for short. We prove that a nonsingular M-equation with a positive right-hand side always has a unique positive solution. Several iterative algorithms are proposed for solving multi-linear nonsingular M-equations, generalizing the classical iterative methods and the Newton method for linear systems. Furthermore, we apply the M-equations to some nonlinear differential equations and the inverse iteration for spectral radii of nonnegative tensors.

Ngai-Ching Wong wong@math.nsysu.edu.tw National Sun Yat-sen University

Title: Random Toeplitz Operators and eigenvalue distribution

Abstract: We give a characterization of random Toeplitz operators as random linear operators on Hilbert spaces given by multiplications. Their properties are studied in term of their generating functions. Our results, when applied with the preconditioned conjugate gradient method, gives a new technique for finding numerical solutions of linear systems associated with a random Toeplitz coefficient matrices. We also investigate the Weyl equidistribution of eigenfunctions of random Toeplitz matrices.

This is joint work with King-Fai Lai, Tsung-Lin Lee and Wen-Fong Ke.

Yaokun Wu

ykwu@sjtu.edu.cn

Shanghai Jiao Tong University

Title: A simple multibody system on a discrete circle

Abstract: Consider a circular track with n stations. Suppose k cars stay in different stations at present and will move around randomly in the same direction to another k stations in discrete time steps. We study the structure of the underlying linear spaces and cones for this simple dynamical system. This work generalizes some previous work on split systems.

This is ongoing joint work with Chengyang Qian.

Jianhong Xu

jhxu@siu.edu

Southern Illinois University Carbondale, USA

Title: Some Characterizations for the Existence of Diagonal Lyapunov Solutions

Abstract: A diagonal Lyapunov solution (DLS) for a real square matrix A refers to a positive diagonal D such that

$$AD + DA^T \succ 0.$$

First, we revisit and extend a result of Redheffer. It characterizes a DLS for A via a DLS which is shared by a principal submatrix of A of order one less and the associated Schur complement. It also leads to the problem of a common diagonal Lyapunov solution (CDLS) for a set $\mathcal{A} = \{A^{(1)}, \ldots, A^{(m)}\}$ of real square matrices of the same size, i.e. whether there exists a positive diagonal D such that

$$A^{(k)}D + D(A^{(k)})^T \succ 0, \ k = 1, \dots, m.$$

Next, generalizing a result of Kraaijevanger on DLS's, we present a number of equivalent conditions that concern the existence of a CDLS for \mathcal{A} via Hadamard products of the matrices in \mathcal{A} with certain positive semidefinite matrices. One of these conditions, for example, can be stated as $A_{i,i}^{(k)} > 0$ for all k, i and det $\left(\sum_{k=1}^{m} A^{(k)} \circ S^{(k)}\right) > 0$ for all $S^{(k)} \succeq 0$, provided that for any $i, S_{i,i}^{(k)} \neq 0$ for some k.

Finally, we talk about results relevant to a structured CDLS. Two characterizations can be developed in this regard: one via the trace of a principal submatrix of $\sum_{k=1}^{m} X^{(k)} A^{(k)}$ with any $X^{(k)} \succeq 0$ but not all zero, while the other via similar Kraaijevanger type Hadamard products. The former strengthens the results of Barker, Berman, and Plemmons, and Hershkowitz and Mashal. It also paves the way for the latter.

This is joint work with Dr. Mehmet Gumus of Department of Mathematics and Statistics at Auburn University.

Qingxiang Xu qingxiang_xu@126.com Shanghai Normal University

Title: A new kind of common upper bound of two Hermitian positive semi-definite matrices

Abstract: Let A and B be two Hermitian matrices of the same order. A new kind of common upper bound of A and B is introduced recently by using certain C^* -algebraic technique. In this talk, we will talk about the detailed construction of this new common upper bound, together with its application to the study of the perturbation analysis for the parallel sum.

Takeaki Yamazaki

t-yamazaki@toyo.jp

Toyo University, Japan

Title: On a generalization of the Aluthge transform in the viewpoint of the operator means

Abstract: Let T = U|T| be a polar decomposition of a bounded linear operator on a complex Hilbert space. The Aluthge transform is defined by $\Delta(T) := |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. In the recent research, S. H. Lee, W. Y. Lee and J. Yoon defined the mean transform as $\hat{T} := \frac{U|T|+|T|U}{2}$. In this talk, we shall generalize the above operator transforms. In fact, we will introduce a generalization of the Aluthge transform in the viewpoint of the operator means. It contains the Aluthge and the mean transforms. Then we shall consider iteration of the mean transform.

Fuzhen Zhang

zhang@nova.edu

Nova Southeastern University, USA

Title: Eigenvalue inequalities of the product of a Hermitian matrix and a positive definite matrix

Abstract: Eigenvalue problem of matrices is of central importance in matrix theory, matrix computation, linear algebra and related areas. Traditionally, eigenvalue inequalities in partial sums involve two Hermitian matrices for sum and a pair of positive semidefinite matrices for product. We show some eigenvalue inequalities of the product of a Hermitian matrix and a positive definite (Hermitian) matrix; we use the results to study perturbation problems of generalized eigenvalues. This is joint work with Bo-Yan Xi.)

Yang Zhang

yang.zhang@umanitoba.ca

University of Manitoba, Canada

Title: Automated reasoning in (semi-) groups with power-maps

Abstract: In group theory, semigroups, and cancellative semigroups, various theorems for commutativity have been explored. For example, n-abelian groups by Baer, Alperin, Kaluzhnin and others; some power products by Padmanabhan and Neumann. All most of these results were proved by human being using some pure algebraic technical knowledge. The methods are often unique and it is difficult to apply for other questions.

Recently, we develop a new concept of "power-like functions" which allows people to deal with

an abstract positive integer powers instead of giving an exact number. It is clear that all power-maps in a group or a semigroup are power-like. Hence this new idea can be applied for a large of classes of commutativity conditions. Our proof belongs to first-order logic and uses a first-order theorem-prover "Prover9". This is the first time that Prover9 has been augmented by power-like functions to enable the first-order theorem-prover to prove theorems in this area.

In this paper, using Prover9 and power-like functions, we prove and extend a well-known result by Neumann (2001). In these automated proofs, the integer power never explicitly appears and hence the lengths of the proofs as well as the lengths of the longest clause in these proofs remain the same. It is also possible to use similar automated proofs in equational theory of rings. This is joint work with R. Padmanabhan.

Participants

No	Name	Institute	Email
1	Guoliang Chen	East China Normal University	glchen@math.ecnu.edu.cn
2	Jianlong Chen	Southeast University	jlchen@seu.edu.cn
3	Zhi Chen	Nanjing Agricultural University	chenzhi@njau.edu.cn
4	Guanghui Cheng	niversity of Electronic Science&Technology of Chi	ghcheng@uestc.edu.cn
5	Gi-Sang Cheon	Sungkyunkwan University	gscheon@skku.edu
6	Man-Duen Choi	University of Toronto, Canada	choi@math.utoronto.ca
7	Delin Chu	National University of Singapore, Singapore	matchudl@nus.edu.sg
8	Xiankun Du	Jilin University	duxk@jlu.edu.cn
9	Mei Feng	Nanchang University	604152276@qq.com
10	Meiping Gao	Wenshan University	382248459@qq.com
11	Daryl Q. Granario	Auburn University	dqg0001@auburn.edu
12	Peichang Guo	China University of Geosciences	peichang@cugb.edu.cn
13	Mahendra Kumar Gupta	Indian Institute of Technology Madras	mahendra14389@gmail.com
14	Zhuo-Heng He	Shanghai University	hzh19871126@126.com
15	Fumio Hiai	Tohoku University	hiai.fumio@gmail.com
16	Hualin Huang	Huaqiao University	hualin.huang@foxmail.com
17	Peng-Ruei Huang	Hirosaki University	h16ds202@hirosaki-u.ac.jp
18	Yunying Huang	East China Normal University	yingzi8869@163.com
19	Dragana Cvetkovic Ilic	University of Nis, Serbia	gagamaka@ptt.rs
20	Zhigang Jia	Jiangsu Normal University	hgjia@jsnu.edu.cn
21	Zhaolin Jiang	Linyi University	jzh1208@sina.com
22	Xiaoqing Jin	University of Macau	xqjin@umac.mo
23	Yifen Ke	University of Chinese Academy of Sciences	keyifen2017@163.com
24	Seung-Hyeok Kye	Seoul National University, Korea	kye@snu.ac.kr
25	Pan-Shun Lau	The Hong Kong Polytechnic University	panlau@connect.hku.hk
26	Chaoqian Li	Yunnan University	lichaoqian@ynu.edu.cn
27	Chi-Kwong Li	College of William and Mary, USA	ckli@math.wm.edu
28	Honghai Li	Jiangxi Normal University	lhh@jxnu.edu.cn
29	Jicheng Li	Xi'an Jiaotong University	jcli@mail.xjtu.edu.cn
30	Libin Li	Yangzhou University	lbli@yzu.edu.cn
31	Ren-Cang Li	University of Texas at Arlington, USA	rcli@uta.edu
32	Wen Li	South China Normal University	liwen@m.scnu.edu.cn
33	Yanyan Li	Wenshan University	liyanyan409@126.com
34	Zhizhi Li	University of Chinese Academy of Sciences	zzli9016@gmail.com
35	Zhongshan Li	Georgia State University, USA	zli@gsu.edu
36	Yongdo Lim	Sungkyunkwan University, Korea	ylim@skku.edu
37	Dayan Liu	Jilin University	liudayan@jlu.edu.cn
38	Aijing Liu	Qufu Normal University	ajliuliu@163.com
39	Xifu Liu	Chongqing Normal University	liuxifu211@hotmail.com
40	Xin Liu	Macao University of Science and Technology	xiliu@must.edu.mo
41	Linzhang Lu	Xiamen University	lzlu@xmu.edu.cn
42	Haifeng Ma	Harbin Normal University	haifengma@aliyun.com

43	Linglei Meng	Cambridge University Press	jmeng@cambridge.org
44	Shuxin Miao	Northwest Normal University	miaosx205@163.com
45	Hiromichi Ohno	Shinshu University, Japan	h_ohno@shinshu-u.ac.jp
46	Hiroyuki Osaka	Ritsumeikan University, Japan	osaka@se.ritsumei.ac.jp
47	Zhen-yun Peng	Guilin University of Electronic Technology	yunzhenp@163.com
48	Edgar Pereira	Federal University of Rio Grandedo Norte, Brazil	edgar@ccet.ufrn.br
49	Diane Christine Pelejo	University of the Philippines Diliman, Philippines	dcpelejo@math.upd.edu.ph
50	Yiu-Tung Poon	Iowa State University, USA	ytpoon@iastate.edu
51	Huan Ren	Nanchang University	841993258@qq.com
52	Abbas Salemi	Shahid Bahonar University of Kerman, Iran	salemi@uk.ac.ir
53	Jian Shi	Hebei University	shijianmath@qq.com
54	Wenyan Shi	China University of Mining and Technology	shiwenyaer@163.com
55	Seok-zun Song	Jeju National University, Korea	szsong@jejunu.ac.kr
56	Yangfeng Su	Fudan University	yfsu@fudan.edu.cn
57	Xiaosong Sun	Jilin University	sunxs@jlu.edu
58	Tin-Yau Tam	Auburn University, USA	tamtiny@auburn.edu
59	Ming-Cheng Tsai	National Taipei University of Technology	mctsai2@mail.ntut.edu.tw
60	Chuan-Long Wang	Taiyuan Normal University	clwang218@126.com
61	Jin Wang	Shangdong University	wangjinxingfu@126com
62	Long Wang	Taizhou University	wanglseu@163.com
63	Teng Wang	Nanchang University	spring0920@163.com
64	Zengqi Wang	Shanghai Jiao Tong University	wangzengqi@sjtu.edu.cn
65	Musheng Wei	Liaocheng University	mwei@shnu.edu.cn
66	Yimin Wei	Fudan University	ymwei@fudan.edu.cn
67	Chaoping Xing	Nanyang Technological University	matxcp@nus.edu.sg
68	Ngai-Ching Wong	National Sun Yat-sen University	wong@math.nsysu.edu.tw
69	Gang Wu	China University of Mining and Technology	gangwu76@126.com
70	Yaokun Wu	Shanghai Jiao Tong University	ykwu@sjtu.edu.cn
71	Changqing Xu	Suzhou University of Science and Technology	cqxuiit@yahoo.com
72	Jianhong Xu	Southern Illinois University Carbondale, USA	jhxu@siu.edu
73	Qingxiang Xu	Shanghai Normal University	qingxiang_xu@126.com
74	Jungong Xue	Fudan University	xuej@fudan.edu.cn
75	Takeaki Yamazaki	Toyo University	t-yamazaki@toyo.jp
76	Chaojun Yang	Suzhou University	cjyangmath@163.com
77	Huihui Yin	Nanchang University	898293848@qq.com
78	Guihai Yu	Guizhou University of Finance and Economics	yuguihai@126.com
79	Shaowen Yu	East China University of Science and Technology	yushaowen@ecust.edu.cn
80	Xingzhi Zhan	East China Normal University	zhan@math.ecnu.edu.cn
81	Daochang Zhang	Northeast Electric Power University	daochangzhang@126.com
82	Fuzhen Zhang	Nova Southeastern University, USA	zhang@nova.edu
83	Leihong Zhang	Shanghai University of Finance and Economics	hang.leihong@mail.shufe.edu.c
84	Yang Zhang	University of Manitoba, Canada	yang.zhang@umanitoba.ca
85	Ruju Zhao	Yangzhou University	zrj0115@126.com
86	Xiangui Zhao	Huizhou University	xiangui.zhao@foxmail.com
87	Bing Zheng	Lanzhou University	bzheng@lzu.edu.cn
88	Yanpeng Zheng	Linyi University	zhengyanpeng0702@sina.com
89	Hongxiu Zhong	Jiangnan University	zhonghongxiu@126.com
			1 2000 01(2

91	Ping Zhou	Wenshan University	646504832@qq.com
92	Huihui Zhu	Hefei University of Technology	hhzhu@hfut.edu.cn
93	Sanmei Zhu	Shangdong University	787560354@qq.com
94	Qing-Wen Wang	Shanghai University	wqw@shu.edu.cn
95	Guang-Da Hu	Shanghai University	ghu@hit.edu.cn
96	Chuanqing Gu	Shanghai University	cqgu@shu.edu.cn
97	Tao Li	Shanghai University	ttaoli123@126.com
98	Yuchao Wang	Shanghai Unviersity	yuchaowang@shu.edu.cn
99	Juntong Liu	Shanghai Unviersity	juntongliu82@163.com
100	Xiangjian Xu	Shanghai Unviersity	xu.xj@ntu.edu.cn
101	Adda Farouk	Shanghai Unviersity	adda-farouk@hotmail.com
102	Mengyan Xie	Shanghai Unviersity	814032276@qq.com
103	Ye Deng	Shanghai Unviersity	690605153@qq.com
104	Jialing Liu	Shanghai Unviersity	liujialing@i.shu.edu.cn
105	Huihui Wang	Shanghai Unviersity	2463265146@qq.com
106	Yiling Wu	Shanghai Unviersity	1099193856@qq.com
107	Boer Li	Shanghai Unviersity	boitalauriane@gmail.com
108	Yanpei Wang	Shanghai Unviersity	wangyanoei2008@163.com
109	Chongquan Zhang	Shanghai University	marcaszhang@gmail.com
110	Yun Ye	Shanghai University	yeyun_shu@126.com
111	Qingqing Zhao	Shanghai University	1013645602@qq.com
112	Hongyan Chen	Shanghai University	CHY0423@i.shu.edu.cn
113	Minghua Lin	Shanghai University	m_lin@i.shu.edu.cn
114	Olga Kushel	Shanghai University	kushel@mail.ru
115	Jiancai Sun	Shanghai University	jcsun@shu.edu.cn
116	Anwa Zhou	Shanghai University	zhouanwa@shu.edu.cn
117	Jingjing Peng	Shanghai University	jjpeng2012@163.com
118	Ligang Kuai	Shanghai University	897199209@qq.com
119	Zhongyang Li	Shanghai University	lzy16720043@t.shu.edu.cn

上海大学数学系简介

上海大学是国家"211 工程"重点建设高校之一。上海大学数学系现有教职 工 116 人,专职教师 100 人,其中教授 26 名、博士生导师 25 人、副教授 35 人、院士 1 名、国家千人计划专家 2 名、上海千人 1 名、教育部长江学者 1 名、 杰青 1 名、中国科学院百人计划 1 名、上海领军人才 1 名、曙光学者 1 名、上 海浦江人才计划 4 名、上海青年东方学者 3 名,45 岁以下博士比例 100%,获 得海外学位或有海外研究经历的人员比例为 95%;在校本科生 500 多人、硕士 研究生 200 多人、博士研究生 60 多人。

数学系有数学一级学科博士点、数学博士后流动站,数学、统计学两个一级 学科硕士点;有上海市教委重点学科、上海市重点学科、上海高校一流学科、上 海市高校高原学科。上海市应用数学与系统科学研究所、上海大学核心数学研究 所、上海大学优化开放实验室、上海大学数学与编码密码研究所、上海大学张量 与矩阵研究中心、上海大学系统科学研究所均挂靠数学系;上海市青少年科技人 才培养基地—上海大学数学科学实践工作站是全国首家数学工作站。

2017 年 USNEWS(《美国新闻和世界报导》)全球最佳大学数学学科排 名上海大学位居第 80;美国 ESI 数据库最新数据,全球前 1%的数学研究机构 有 241 个,上海大学排第 119,进入全球前 5‰行列。近年来数学系每年有近 300 位国内外著名专家学者前来讲学交流,包括菲尔兹奖得主 Zelmanov 及杨 乐等 30 多位海内外院士来上海大学数学系访问和科学合作研究。主办或承办了 包括"第 14 届国际线性代数协会年会"在内的大型国内外学术会议 40 多次。

The Department of Mathematics, Shanghai University

Shanghai University (SHU) is one of China's key universities of 'Project 211'. The Department of Mathematics is the home of 116 well qualified people, among them 100 are full-time faculty members. The team of faculty members is formed by 26 professors, 25 doctoral advisors, 35 associate professors, 1 academician, 2 National Thousand Talent Plan, 1 Shanghai Thousand Talent Plan, 1 Chang Jiang Scholars Program, 1 National Science Fund for Distinguished Young Scholars Program, 1 Chinese Academy of Sciences Hundred Talents Program, 1 Shanghai Leading Talent, 1 Dawn Program of Shanghai Education Commission, 4 Shanghai Pujiang Talent Program, 3 Shanghai Oriental distinguished professors, 100% of doctors under the age of 45, 95% of overseas graduates or staff with overseas research experience. It has over 500 undergraduates, 200 graduates, and 60 doctoral candidates.

The Department of Mathematics consists of one first-level doctoral program in mathematics, one mathematics postdoctoral research station , two first-level graduate programs in mathematics and statistics; and Shanghai municipal education commission key disciplines, Shanghai key disciplines, Shanghai first-class discipline, Shanghai plateau discipline. In addition, Shanghai Institute of Applied Mathematics and Systems Science, Institute of Core Mathematical Research of Shanghai University, Shanghai University Open Laboratory for Operations Research & Optimization, Institute of Mathematics and Coding & Cryptography of Shanghai University, International Research Center for Tensor and Matrix Theory of Shanghai University, Institute of Systems Science of Shanghai University are all affiliated to the Department of Mathematics. Shanghai youth talent training base — the work station on mathematics practice workstation of Shanghai University is a pioneering under taking for the national mathematics workstation.

In 2017, SHU was ranked at the 80th place in the USNEWS World's Best University Mathematics Ranking. According to the latest data from the US ESI database, there are 241 mathematics research institutions are recognized as world's top 1%, among which, Shanghai University ranks 119, entering the top 5‰ in the world. In recent years, there are nearly 300 famous experts every year coming to the Department of Mathematics for extensive academic exchange and research cooperation. Among them, more than 30 domestic and foreign academicians including Fields Medal winner – Zelmanov and Professor Yang Le have visited the department. Besides, the Department of Mathematics hosted or undertook more than 40 large-scale international academic conferences including the 14th Conference of the International Linear Algebra Society.

those holding single journey tickets need to pay for new tickets if they should exit the above stations.

Tip:

1.Shanghai Railway Station (Line1,Line3 and Line4),

2.West NanjingRoad (Line2 , Line12 and Line13) ,

4.Longhua (Line11 and Line12) ,

Line 11

Changji Rd.(E

obile City

Nest Jk

Baiyin Ro

ŀ

Meilan Lake

anguang Rd.

iuhang

Gucun Parl

Sh

Line 7

The picture is for reference only. All rights reserved, reproduction prohibited.

Passengers holding public transportation cards are entitled to free transfer and uninterrupted fare charging within 30 minutes after getting out of the following stations : Airport Railway E Maglev 1 Metro Out-of-system Transfer Station Huangpu River Station O Intercha nge Line 11 Line 13 Line 1 Line 3 Line 5 Line 7 Line 9 3.Hongqiao Airport Terminal2 (Line2 and Line10, in-station transfer is only allowed between a train of line 2 bound for Line 10 Line 12 Line 16 e 6 Pudorg international Airport and that of line 10 bound for Xinjiangwancheng or Hangzhong Road at this station). Line 17 Pujiang Line

Line 8 Xinjiang cheng Gongkang Rd Songfa Rd Yingao Rd.(E) Shiguang R angijang Rd.(S) Pengpu Xincur Venjiang Rd. Line 11 Changzh ing Ro Yingao Rd.(W) e Trade Zone/S iangyin Rd Wenshui Rd Jiangwan Tow Jiangwan Stadium ing Parl Xingzhi Rd. ranji Rd.(M) an Rd ang Ro luangxing Rd. Hongkor Stadiun Qu napu Rd. Xincun Ro Longol Rd ang Rd. Aiguo Fuxing Is Rd. Rd. Yanggad Langao Rd Rd.(W) Feng Sh -Rd.(S) ng Rd Line 13 Wulian Rd henbei Rd. Daduhe Rd. ihenjiang Rd.Line 12 Line 4 W Jiangning Ro iou Rd n Rd Rd Caol a Rd. Line 17 ng Rd 0 Line 9 ng Rd.(E) ng Rd. Beixinjing Weining Rd Jan Rd. Zhugu ng Rd Jingia Pudona / Minsheng Rd Panle na Rd East Xuj Xuying Rd ing nen Stadiut Lantian Rd. 0 Ö Line 2 Yanggao Rd.(M Fangdian Rd Jiasong Rd.(M Line 10 Sh Shanghai Science &Technology Mus Hangzhong Rd Line 7 H Century Park Daput Huijin Ro Zhangji an Rd. Tangzhen Chu Gu ng Rd. Hechuan Rd. Caohejing Hi-Tech Parl Xingzh Luban Rd xia Rd.(E Caoving Rd 16 Chu Line 13 Rd Guille Linyi X Line 17 anhu Ave Hongmei F anggao Rd.(S) Rd.(W) Sijing a Rd.(N Oriental Land Zhujiajiao ଉ na Ave unjin Rd. Lianhua Rd Line 12 Huaxia Rd.(M Line 6 dong Airpor Line 1 Line 2 Sha Rd.(W) Line 5 Chunshen Rd Lingzh du Da in Hwy. Disney Resort East Sanlin Pusan Rd. Yuqiao n Rd. Kan Zhuangiao Line 11 Beigiad East Zh Pujiang Town Zuibaichi Park ର Jianchuai Mi Songjiang Railway S Line 5 Heshahan Line 8 Shendu Hw Putang East Minrui Rd mal Park Puhang Rd East Hu Huizhen Rd. Puttang Sh Lingang Ave Line 16 Dishui Lake

Line 1 Fujin Rd.

Shanghai

University

hen Rd.

Youyi Rd.(W

Bao'an Hw

Gongfu Xino

Hulan R

Tonghe Xincu

- Jiangyang Rd.(N)

Tieli Rd.

Youyi Rd

Shuichan Rd

Zhangt

Line 10

Line 6

Line 3