Weak slice regular functions in several variables over a weak slice-cone

(jointed with Guangbin Ren, Irene Sabadini, Ting Yang, Ming Jin)

Institute of Mathematics, AMSS, Chinese Academy of Sciences

The 2022 Annual Conference on Several Complex Variables August 20, 2022 at Shanghai University

Cayley-Dickson Algebras

• Denote
$$A_0 := \mathbb{R}$$
, $e_0 := 1$.
• Conjugate: $\forall x \in A_0, \overline{x} := x$.
• $A_{\ell+1} := A_\ell + A_\ell e_{2\ell}$ is defined by:
• Multiplication:
 $(a + be_{2\ell})(c + de_{2\ell}) := (ac - \overline{d}b) + (da - b\overline{c})e_{2\ell}, \quad \forall a, b, c, d \in A_\ell$.

Conjugate:

$$\overline{a+b\mathbf{e}_{\mathbf{2}^{\ell}}}:=\overline{a}-b\mathbf{e}_{\mathbf{2}^{\ell}},\qquad\forall\ a,b\in A_{\ell}.$$

Denote

$$e_{m+2^{\ell}} := e_m \cdot e_{2^{\ell}}, \qquad m = 1, 2, ..., 2^{\ell} - 1.$$

• $e_0, e_1, ..., e_{2^{\ell}-1}$ is a basis of the real vector space $A_{\ell} \cong \mathbb{R}^{2^{\ell}}$.

Cayley-Dickson Algebras

- Complex numbers $\mathbb{C} = A_1$, quaternions $\mathbb{H} = A_2$, octonions $\mathbb{O} = A_3$, sedenions $\mathfrak{S} = A_4$.
- A_{ℓ} , $\ell \leq 3$, is alternative, i.e.

$$egin{cases} (aa)b=a(ab),\ a(bb)=(ab)b, \end{cases} orall a,b\in A_\ell.$$

- A_{ℓ} , $\ell \geq 4$ is not alternative.
 - Let $a := e_1 e_{10}$ and $b := e_4 + e_{15}$. By directly calculation,

$$ab = ba = 0, \qquad a^2 = -2.$$

Then $(aa)b \neq a(ab)$ since

$$egin{aligned} &(aa)b=-2b
eq0,\ &a(ab)=a\cdot 0=0. \end{aligned}$$

Slice structure of Quaternions $\mathbb{H} = A_2$

• Imaginary units of $A_2 = \mathbb{H}$:

$$\begin{split} \mathbb{S}_{\mathbb{H}} &:= \left\{ I \in \mathbb{H} : I^2 = -1 \right\} \\ &= \left\{ x_1 e_1 + x_2 e_2 + x_3 e_3 : x_i \in \mathbb{R}, \; x_1^2 + x_2^2 + x_3^2 = 1 \right\}. \end{split}$$

• A slice of \mathbb{H} :

$$\mathbb{C}_I := \mathbb{R} + \mathbb{R}I, \qquad I \in \mathbb{S}_{\mathbb{H}}.$$

• Slice structure of Ⅲ:

$$\mathbb{H} = \bigcup_{I \in \mathbb{S}_{\mathbb{H}}} \mathbb{C}_{I}.$$

• For each $\Omega \subset \mathbb{H}$, denote

$$\Omega_I := \Omega \cap \mathbb{C}_I, \qquad \Omega_{\mathbb{R}} := \Omega \cap \mathbb{R}.$$

Classcial quaternionic analysis (Fueter, 1934, Comment. Math. Helv.):

A function *f* : Ω ∈ τ(ℍ) → ℍ is called Fueter regular, if it satisfies the Cauchy-Fueter equation, i.e.

$$\left(\frac{\partial}{\partial x_0}+i\frac{\partial}{\partial x_1}+j\frac{\partial}{\partial x_2}+k\frac{\partial}{\partial x_3}\right)f(x_0+x_1i+xj+x_3k)=0.$$

- q, q^n are not Fueter regular.
- Slice quaternionic analysis: Study a class of functions containing $\sum_{n \in \mathbb{N}} q^n a_n$ which is convengence.

5/29

Slice analysis study two classes of functions:

- Weak slice regular functions (Gentili and Struppa, Adv. Math., 2007):
 - Certain functions which are holomorphic in each slice (\mathbb{C}_I , $I \in \mathbb{S}$).
 - Denote by $WSR(\Omega)$, $\Omega \subset \mathbb{H}$.
- Strong slice regular functions (Ghiloni and Perotti, Adv. Math., 2011, for studying slice analysis in alternative algebras case):
 - Induced by a holomorphic stem function.
 - Denote by $SSR(\Omega)$, $\Omega \subset \mathbb{H}$.
 - Holomorphic stem functions: A kind of vector-valued holomorphic functions in complex analysis.
 - Many properties of $\mathcal{SSR}(\Omega)$ are induced by holomorphic stem functions.
- $SSR(\Omega) \subset WSR(\Omega)$.

< ロ > < 同 > < 回 > < 回 > .

Slice quaternionic analysis

Representation formula for $WSR(\Omega)$: To find a stem function for a fixed weak slice regular function.

- Case of $\Omega = B(0, R) := \{q \in \mathbb{H} : |q| < R\}$ (Gentili and Struppa, 2007, Adv. Math.).
- Case of $\Omega \subset \mathbb{H}$ being symmetric (Colombo, Gentili, Sabadini, Struppa, 2009, Adv. Math.).
- Case of $\Omega \subset \mathbb{H}$ being non-symmetric (Dou, Ren, Sabadini, accepted by JEMS).
 - The representation formula may not hold when Ω is not symmetric. For example: a weak slice regular extension of

 $F(z):=\sqrt{z-rac{J}{2}:(0,+\infty)+rac{J}{2}
ightarrow\mathbb{R}}$, where $J\in\mathbb{S}.$

- A revised formula, called the path-representation formula, hold for this case.
- To prove path-representation formula, we need introduce a new topolopy, called the slice topolopy.
- Many result in complex analysis can be extended to weak slice analysis by (path-)representation formula.

イロト イボト イヨト イヨト

- Weak slice analysis:
 - In one variable (on non-symmetric domains): Case of Clifford algebra Cl_{0,ℓ} (e.g. quaternions 𝔄 = Cl_{0,2}), octonions 𝔅.
 - In several variable: on symmetric domains in the weak slice cone Oⁿ_s (a subset of the strong slice cone Oⁿ).
- Strong slice analysis:
 - In one/several variable: on symmetric domains in the quadratic cone (strong slice cone) Qⁿ_A, where A is a real alternative *-algebra (e.g. Cl_{m,l}, O).
- Our work: Extend weak slice analysis in several variables to
 - A case of ℝ^{2d}, which includes real alternative *-algebras and Cayley-Dickson algebras (e.g. sedenions 𝔅).
 - Our weak slice regular functions are defined on non-symmetric domains in weak slice cones (a subset of strong slice cones).

• □ ▶ • < </p>
• □ ▶ • < </p>

• Slice topology:

$$au_{\boldsymbol{s}}(\mathbb{H}) := \{ \Omega \subset \mathbb{H} : \Omega_{\boldsymbol{l}} \in \tau(\mathbb{C}_{\boldsymbol{l}}), \ \forall \ \boldsymbol{l} \in \mathbb{S} \}.$$

- We call connected sets in τ_s , slice-connected sets. We also call domains in τ_s , slice-domains, etc.
- $\tau(\mathbb{H}) \subsetneq \tau_{s}(\mathbb{H}).$
 - Example: $\Omega \in \tau_s(\mathbb{H}) \setminus \tau(\mathbb{H})$. Here fixed $I \in S_{\mathbb{H}}$, and define

$$\Omega:=\bigcup_{J\in\mathbb{S}}\Omega_J,$$

$$\Omega_J := \begin{cases} \{x + yJ \in \mathbb{C}_J : x^2 + \frac{y^2}{\operatorname{dist}(J, \mathbb{C}_I)^2} < 1\}, & J \neq \pm I, \\ \{x + yJ \in \mathbb{C}_J : x^2 + y^2 < 1\}, & J = \pm I. \end{cases}$$

Definition (Gentili and Struppa, Adv. Math., 2007)

A function $f : \Omega \in \tau_s(\mathbb{H}) \to \mathbb{H}$ is called weak slice regular, if for each $I \in \mathbb{S}_{\mathbb{H}}$, $f_I := f \mid_{\Omega_I}$ is *I*-holomorphic, i.e. f_I is real differentable and

$$\frac{1}{2}\left(\frac{\partial}{\partial x}+I\frac{\partial}{\partial y}\right)f_{l}(x+yl)=0, \qquad \forall x+yl\in\Omega_{l}.$$

- It is easy to check that $q^n a_n|_{\mathbb{C}_l}$ is *l*-holomorphic.
 - It implies that if $\sum_{n \in \mathbb{N}} q^n a_n$ is convergence, then $\sum_{n \in \mathbb{N}} q^n a_n \in \mathcal{WSR}(\Omega)$.

Representation Formula

• $\Omega \subset \mathbb{H}$ is called symmetric, if $\Omega = \widetilde{\Omega}$, where

$$\widetilde{\Omega} := \bigcup_{x+y \in \Omega} x + y \mathbb{S}.$$

Theorem (Colombo, Gentili, Sabadini, Struppa, Adv. Math., 2009)

(*Representation Formula*) Let $\Omega \subset \mathbb{H}$ is a symmetric slice-domain, and $f : \Omega \to \mathbb{H}$ be weak slice regular. Then

$$f(x + yl) = (1, l)F(x, y), \quad \forall x + yl \in \Omega$$

where

$$F(x,y) := \begin{pmatrix} 1 & J_1 \\ 1 & J_2 \end{pmatrix}^{-1} \begin{pmatrix} f(x+yJ_1) \\ f(x+yJ_2) \end{pmatrix}$$

is independent of the choice of $J_1, J_2 \in \mathbb{S}_{\mathbb{H}}$ with $J_1 \neq J_2$. F is called the stem function of f.

• The value of f is decided by two holomorphic functions f_{J_1} and f_{J_2} .

Path-representation Formula

• For any path γ in $\mathbb C$ and $J \in \mathbb S_{\mathbb H}$, define

$$\gamma^J := \mathcal{P}_J \circ \gamma,$$

where $\mathcal{P}_J : \mathbb{C} \to \mathbb{C}_J, \ x + yi \mapsto x + yJ$, $\forall x, y \in \mathbb{R}$.

Theorem (Dou, Ren, Sabadini, accepted by JEMS)

(Path-reprentation Formula) Let $f : \Omega \in \tau_s(\mathbb{H}) \to \mathbb{H}$ be weak slice regular, γ be a path in \mathbb{C} with $\gamma(0) \in \mathbb{R}$. If there are $J_1, J_2 \in \mathbb{S}_{\mathbb{H}}$ with $J_1 \neq J_2$ and $\gamma^{J_1}, \gamma^{J_2} \subset \Omega$, then

$$f \circ \gamma' = (1, I) F(\gamma), \quad \forall I \in \mathbb{S}_{\mathbb{H}} \text{ with } \gamma' \subset \Omega,$$

where

$$F(\gamma) := \begin{pmatrix} 1 & J_1 \\ 1 & J_2 \end{pmatrix}^{-1} \begin{pmatrix} f \circ \gamma^{J_1} \\ f \circ \gamma^{J_2} \end{pmatrix}$$

is independent of choice of $J_1, J_2 \in S_{\mathbb{H}}$. F is called a path-stem function of f.

Strong slice regular functions

In 2011, Ghiloni and Perotti study $\mathcal{SSR}(\Omega)$, when Ω is symmetric.

• A real finite dimensional alternative algebra *A* is called a real alternative *-algebra, if there is an imaginary unit in *A*, i.e.

$$\varnothing \neq \mathbb{S}_{A} := \{I \in A : I^{2} = -1\}.$$

• The quadratic cone of *A*:

$$Q_A := \bigcup_{I \in \mathbb{S}_A} \mathbb{C}_I.$$

• Let Ω be a symmetric domain in Q_A . Then $f : \Omega \to A$ is called strong slice regular if there is a (stem function) $F : \Omega_s \to A^{2 \times 1}$ such that

$$f(x + yl) = (1, l)F(x, y), \quad \forall x + yl \in \Omega$$

and *F* is holomorphic, i.e.

$$\frac{1}{2} \begin{pmatrix} \frac{\partial}{\partial x} + \begin{pmatrix} & -1 \\ 1 & \end{pmatrix} \frac{\partial}{\partial y} \end{pmatrix} F = 0.$$

where $\Omega_s := \{(x, y) \in \mathbb{R}^2 : \exists l \in \mathbb{S}_A, s.t. x + yl \in \Omega\}.$

- $SSR(\Omega) = WSR(\Omega)$ when Ω is a symmetric domain in Q_A .
 - Ghiloni and Perotti prove that the part of $SSR(\Omega) \subset WSR(\Omega)$.
 - When A is octonions or Clifford algebra Cl_{0,n}.
 - $SSR(\Omega) \supset WSR(\Omega)$ holds directly by representation formula.
 - Representation formula does not hold for general case, since

 $J_1 - J_2$ may not be inverse, so is $\begin{pmatrix} 1 & J_1 \\ 1 & J_2 \end{pmatrix}$.

- However, representation formula also holds when $J_1 = -J_2$.
- It also enough to prove that $SSR(\Omega) \supset WSR(\Omega)$.
- We would like to study $WSR(\Omega)$ when Ω be non-symmetric.
 - We can not choice J_1 to be $-J_2$, since Ω is not symmetric.
 - $J_1 J_2$ may not be inverse.
 - We will use Moore-Penrose inverse.

< ロ > < 同 > < 三 > < 三

Strong slice regular functions in several variables

- Ghiloni and Perotti (Math. Z., 2022) study a class of strong slice regular functions $SSR(\Omega)$ on $Q_A^n := (Q_A)^n$, where A is a real alternative *-algebra.
 - In case of n = 2, a strong slice regular function f : Ω(⊂ Q_A²) → A and its stem function F : Ω_s(⊂ C²) → A^{2²×1} satisfying

$$f(x_1 + y_1 I, x_2 + y_2 J) = (1, I, J, IJ)F(x_1 + y_1 i, x_2 + y_2 i)$$
(1)

Here the stem function *F* is holomorphic, i.e.

$$\begin{cases} \frac{1}{2} \left(\frac{\partial}{\partial x_1} + \sigma_1 \frac{\partial}{\partial y_1} \right) F(x_1 + y_1 i, x_2 + y_2 i) = 0, \\ \frac{1}{2} \left(\frac{\partial}{\partial x_2} + \sigma_2 \frac{\partial}{\partial y_2} \right) F(x_1 + y_1 i, x_2 + y_2 i) = 0, \end{cases}$$

where

$$\sigma_1 = \begin{pmatrix} & -1 & & \\ 1 & & & \\ & & -1 \\ & & 1 & \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} & -1 & & \\ & & -1 \\ 1 & & & \\ & 1 & & \end{pmatrix}$$

• Example: $q_1^{k_1}q_2^{k_2}\cdots q_n^{k_n}b \in SSR(\Omega)$, where $b \in A$.

Strong slice regular functions in several variables

- The class of strong slice regular functions is not unique, if we do not consider the holomorphy of *f* on slice C₁ × C₃.
 - For example, if we replace (1) with

 $f(x_1 + y_1 I, x_2 + y_2 J) = (1, I, J, JI)F(x_1 + y_1 i, x_2 + y_2 i).$

And gain a class of strong slice regular functions, denoted by $SSR_1(\Omega)$. Then

 $q_1q_2 \in SSR(\Omega) \setminus SSR_1(\Omega), \qquad q_2q_1 \in SSR_1(\Omega) \setminus SSR(\Omega).$

• When $A = \mathbb{O}$, Dou, Ren, Sabadini and Yang (JGA, 2021) study a class of functions which is holomorphic on $\mathbb{C}_I \times \mathbb{C}_I$, $\forall I \in \mathbb{S}_A$, i.e. weak slice regular functions $WSR(\Omega)$, where Ω is a symmetric slice-open set in

$$\mathbb{O}_{s}^{2} = (Q_{A})_{s}^{n} = \bigcup_{I \in \mathbb{S}_{A}} \mathbb{C}_{I} \times \mathbb{C}_{I}, \qquad \left(Q_{A}^{2} = \bigcup_{I, J \in \mathbb{S}_{A}} \mathbb{C}_{I} \times \mathbb{C}_{J}\right)$$

We call $(Q_A)_s^n$ weak slice cone and Q_A^n strong slice cone.

• If $A = \mathbb{O}$ (for general real alternative algebra A is similar) then

 $\mathcal{SSR}(\Omega)|_{(Q_{A})_{S}^{n}} = \mathcal{WSR}\left(\Omega|_{(Q_{A})_{S}^{n}}\right).$

- Here SSR(Ω) and WSR(Ω) are both only studied when Ω is symmetric.
- We want to study slice regular functions defined on some non-symmetric set Ω.
 - It is hard to find a 'good' class of 'holomorphic' functions defined on C_I × C_J × C_K. So we also study weak slice regular functions defined on a slice-open set on weak slice cone, e.g. (Q_A)ⁿ_s.

Weak slice cone

- We replace real alternative *-algebra *A* with \mathbb{R}^{2n} and study $\mathcal{WSR}(\Omega)$ in this case, (see Dou, Ren, Sabadini, arXiv:2011.13770).
 - A set of complex structures:

$$\mathcal{C} \subset \{I \in \textit{End}(\mathbb{R}^{2n}) : I^2 = -id_{\mathbb{R}^{2n}}\}.$$

with C = -C.

Weak slice cone:

$$\mathcal{W}_{\mathcal{C}}^{d} := \bigcup_{l \in \mathcal{C}} \mathbb{C}_{l}^{d} \subset \left[\textit{End}\left(\mathbb{R}^{2n}
ight)
ight]^{d}$$

Slice topology:

$$\tau\left(\mathcal{W}_{\mathcal{C}}^{d}\right) := \left\{\Omega \subset \mathcal{W} : \Omega_{I} \in \tau\left(\mathbb{C}_{I}^{d}\right)\right\}.$$

• Remark: In case of real alternative *-algebra A, C corresponds \mathbb{S}_A , and \mathcal{W}_C^d corresponds $(Q_A)_s^n$.

Xinyuan Dou (CAS)

- Our theory covers not only the real alternative *-algebra case, but also someother algebras called left slice complex structure algebras, LSCS algebras for short.
 - A real finite-dimensional unital algebra $A \neq \{0\}$ is called an LSCS algebra for short, if there is $b \in A$ such that L_b is a complex structure on A.
 - Here $L_b : A \rightarrow A, x \mapsto bx$.
 - Certain real left alternative algebras are LSCS algebra.
 - Real alternative *-algebras are in this case, which includes Clifford algebras (e.g. complex numbers, quaternions, split-quaternions) and octonions.

Moreover, Cayley-Dickson algebras A_{ℓ} , $\ell > 0$ are LSCS algebras.

Weak slice cone

In LSCS algebras case, we set

$$\mathcal{C}=\mathcal{C}_{\mathcal{A}}:=\{L_{\mathcal{b}}: \mathcal{b}\in \mathcal{A}, \ (L_{\mathcal{b}})^2=-\mathit{id}_{\mathcal{A}}\}.$$

• If *A* is left alternative, then by $L_a L_a = L_{a^2}$,

$$\mathcal{C}_{\mathcal{A}} = \{L_a : a \in \mathcal{A}, \ a^2 = -1\} = \{L_a : a \in \mathbb{S}_{\mathcal{A}}\}.$$

In case of sedenions Θ,

$$\mathcal{C}_{\mathfrak{S}} = \{a + be_8 \in \mathbb{S}_{\mathfrak{S}} : a, b \in \mathbb{O} \text{ with } ab = ba\}$$

• $f: \Omega \in \tau_s(\mathcal{W}^d_{\mathcal{C}}) \to \mathbb{R}^{2n}$ is called weak slice regular, if

$$\frac{1}{2}\left(\frac{\partial}{\partial x_{\ell}}+I\frac{\partial}{\partial y_{\ell}}\right)f(x+yI)=0, \qquad \forall x+yI\in\Omega,$$

 $\ell = 1, 2, ..., d.$

Weak slice cone

- By similar method for the case of one quaternionic variable, many results holds:
 - (Splitting Lemma) Let Ω ∈ τ_s (W^d_C). f : Ω → ℝ²ⁿ is weak slice regular if and only if for any *I* ∈ C and *I*-basis {ξ₁,...,ξ_n}, there are *n* holomorphic functions *F*₁,...,*F_n* : Ω_{*I*} → ℂ_{*I*}, such that

$$f_l = \sum_{\ell=1}^n (F_\ell \xi_\ell).$$

- (Identity Principle) Let Ω be a slice-domain in $\mathcal{W}^d_{\mathcal{C}}$, and $f, g: \Omega \to \mathbb{R}^{2n}$ be weak slice regular. Then
 - If Ω_R ≠ Ø and f, g coincide on a non-empty open subset of Ω_R, then f = g on Ω.
 - If *f*, *g* coincide on a non-empty open subset of Ω_l for some *l* ∈ C, then *f* = *g* on Ω.

(Also need similar method for the case of \mathbb{O}_s^n .)

Moore-Penrose inverse

- For each $A \in End(\mathbb{R}^{2n})^{\ell \times \ell} \cong \mathbb{R}^{2n\ell \times 2n\ell}$, denote by A^* the transpose of $A \in \mathbb{R}^{2n\ell \times 2n\ell}$ as a real matrix.
 - For example, let n = 1, $\ell = 2$ and $A = \begin{pmatrix} I \\ I \end{pmatrix}$ where $I = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$. Then

$$A^* = \begin{pmatrix} I^* \end{pmatrix} = \begin{pmatrix} I^* \end{pmatrix}$$
 and we denote $A^T := \begin{pmatrix} I \end{pmatrix}$.

• Let $J \in \text{End}(\mathbb{R}^{2n})^{k \times \ell}$. Then there is a unique matrix J^+ in End $(\mathbb{R}^{2n})^{\ell \times k}$ (called the Moore-Penrose inverse of J) that satisfies the Moore-Penrose conditions:

•
$$JJ^+J = J$$
, $J^+JJ^+ = J^+$.

•
$$(JJ^+)^* = JJ^+, \qquad (J^+J)^* = J^+J.$$

• Fix a complex structure \mathbb{J} in \mathbb{R}^{2n} with $\mathbb{J}^*\mathbb{J} = id_{\mathbb{R}^{2n}}$. Then for each complex structure $I \in C$, we choose a fixed $D_I \in \text{End}(\mathbb{R}^{2n})$ with

$$I=D_I\mathbb{J}(D_I)^{-1}.$$

Extension Lemma

• Let $J = (J_1, ..., J_k) \in \mathcal{C}^k$. Define

$$D_J := \begin{pmatrix} D_{J_1} & & \\ & \ddots & \\ & & D_{J_k} \end{pmatrix}, \qquad \text{diag}(J) := \begin{pmatrix} J_1 & & \\ & \ddots & \\ & & J_k \end{pmatrix},$$

and

$$\zeta(J) := \begin{pmatrix} 1 & J_1 \\ \vdots & \vdots \\ 1 & J_k \end{pmatrix}$$

We call

$$\zeta^+(J) := [D_J \cdot \zeta(J)]^+ D_J$$

the *J*-slice inverse of $\zeta(J)$.

- Let $I \in \mathcal{C}$ and $J = (J_1, ..., J_k) \in \mathcal{C}^k$. Then
 - $I[(1, I)\zeta^+(J)] = [(1, I)\zeta^+(J)] \operatorname{diag}(J).$

Extension Lemma

• For any $\Omega \subset \mathcal{W}^d_{\mathcal{C}}$, define

$$\mathscr{P}(\mathbb{C}^{d}) := \{ \gamma : [0, 1] \to \mathbb{C}^{d}, \ \gamma \text{ is a path s.t. } \gamma(0) \in \mathbb{R}^{d} \};$$
$$\mathscr{P}\left(\mathbb{C}^{d}, \Omega\right) := \left\{ \delta \in \mathscr{P}\left(\mathbb{C}^{d}\right) : \exists I \in \mathcal{C}, \ \text{s.t. } \delta' \subset \Omega \right\},$$

and for each $\gamma \in \mathscr{P}\left(\mathbb{C}^{d}\right)$ we define

$$\mathcal{C}(\gamma,\Omega) := \left\{ I \in \mathcal{C} : \gamma^I \subset \Omega \right\}.$$

• Let $J = (J_1, ..., J_k) \in C^k$, $\Omega \subset W^d_C$ and $\gamma \in \mathscr{P}(\mathbb{C}^d, \Omega)$. We define

$$\mathcal{C}_{\textit{ker}}(J) := \left\{ I \in \mathcal{C} : \ker(1, I) \supset igcap_{\ell=1}^k \ker(1, J_\ell)
ight\},$$

and

$$\mathcal{C}(\Omega, \gamma, J) := \mathcal{C}(\Omega, \gamma) \cap \mathcal{C}_{ker}(J).$$

Xinyuan Dou (CAS)

Weak slice regular functions

э

Extension Lemma

Lemma

(Extension Lemma) Let $U \in \tau(\mathbb{C}^d)$, $I \in C$ and $J = (J_1, ..., J_k) \in C^k$. If $g_{\ell} : U^{J_{\ell}} \to \mathbb{R}^{2n}$, $\ell = 1, ..., k$ are holomorphic, then $g[I] : U^I \to \mathbb{R}^{2n}$ defined by

$$g[I](x+yI) = (1,I)\zeta^+(J)g(x+yJ), \qquad \forall x+yi \in U_i$$

where

$$g(x+yJ) = \begin{pmatrix} g_1(x+yJ_1) \\ \vdots \\ g_k(x+yJ_k) \end{pmatrix}$$

is holomorphic. Moreover, if $U_{\mathbb{R}} := U \cap \mathbb{R}^d \neq \emptyset$, $g_1 = \cdots = g_k$ on $U_{\mathbb{R}}$ and $I \in \mathcal{C}_{ker}(J)$, then

$$g[I] = g_1 = \cdots = g_k$$
 on $U_{\mathbb{R}}$.

Xinyuan Dou (CAS)

Key part of the proof.

For each $\ell \in \{1, ..., d\}$ and $x + yi \in U$,

$$\begin{aligned} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + I \frac{\partial}{\partial y_{\ell}} \right) g[I](x + yI) \\ = \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + I \frac{\partial}{\partial y_{\ell}} \right) (1, I)\zeta^{+}(J)g(x + yJ) \\ = (1, I)\zeta^{+}(J) \begin{pmatrix} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + J_{1} \frac{\partial}{\partial y_{\ell}} \right) \\ & \ddots \\ & \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + J_{k} \frac{\partial}{\partial y_{\ell}} \right) \end{pmatrix} \begin{pmatrix} g_{1}(x + yJ_{1}) \\ \vdots \\ g_{k}(x + yJ_{k}) \end{pmatrix} \\ = (1, I)\zeta^{+}(J) \begin{pmatrix} \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + J_{1} \frac{\partial}{\partial y_{\ell}} \right) g_{1}(x + yJ_{1}) \\ \vdots \\ & \frac{1}{2} \left(\frac{\partial}{\partial x_{\ell}} + J_{k} \frac{\partial}{\partial y_{\ell}} \right) g_{k}(x + yJ_{k}) \end{pmatrix} = 0. \end{aligned}$$

Hence g[I] is holomorphic.

Xinyuan Dou (CAS)

August 20, 2022

By similar method for the case of one quaternionic variable, we have

Theorem (Main theorem)

(Path-representation Formula) Let $\Omega \in \tau_s(\mathcal{W}_c^d)$, $\gamma \in \mathscr{P}(\mathbb{C}^d, \Omega)$, $J = (J_1, J_2, ..., J_k) \in [\mathcal{C}(\gamma, \Omega)]^k$ and $I \in \mathcal{C}(\gamma, \Omega, J)$. If $f : \Omega \to \mathbb{R}^{2n}$ is weak slice regular, then

$$f \circ \gamma^I = (1, I)F(\gamma, J),$$

where

$$\mathsf{F}(\gamma, J) = \zeta^+(J)(f \circ \gamma^J), \quad and \quad f \circ \gamma^J := \begin{pmatrix} f \circ \gamma^{J_1} \\ \vdots \\ f \circ \gamma^{J_k} \end{pmatrix}.$$

3 N

Hyper-sigma-ball

• In quaternionic case, let $I \in S_{\mathbb{H}}$ and $a \in \mathbb{H}$, then the domain of convergence of the series

$$f(q) = \left[\sum_{n \in \mathbb{N}} \left(q - \frac{l}{2}\right)^{*2^n}\right] a,$$

is the σ -ball

$$\Sigma\left(\frac{l}{2},1\right) = \left\{\bigcup_{J\in\mathbb{S}_{\mathbb{H}}} \mathcal{P}_{J}\left[B\left(\frac{i}{2},1\right) \cap B\left(-\frac{i}{2},1\right)\right]\right\} \bigcup \left\{\mathcal{P}_{I}\left[B\left(\frac{i}{2},1\right)\right]\right\}.$$

• However, in sedenionic case, let $I = e_1$ and $a = e_4 + e_{15}$, then the domain of convergence is the hyper- σ -ball:

$$\left\{\bigcup_{J\in\mathbb{S}_{\mathfrak{S}}}\mathcal{P}_{J}\left[B\left(\frac{i}{2},1\right)\cap B\left(-\frac{i}{2},1\right)\right]\right\}\bigcup\left\{\bigcup_{K\in\mathcal{S}}\mathcal{P}_{K}\left[B\left(\frac{i}{2},1\right)\right]\right\},$$

where $S = \{(\cos \theta e_1 + \sin \theta e_2)(\cos \theta + \sin \theta e_8) : \theta \in [0, \pi)\}.$

Thanks

▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで