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Cayley-Dickson Algebras

• Denote A0 := R, e0 := 1.
• Conjugate: ∀ x ∈ A0, x := x .

• Aℓ+1 := Aℓ + Aℓe2ℓ is defined by:
• Multiplication:

(a + be2ℓ) (c + de2ℓ) :=
(

ac − db
)
+ (da − bc) e2ℓ , ∀ a, b, c, d ∈ Aℓ.

• Conjugate:

a + be2ℓ := a − be2ℓ , ∀ a,b ∈ Aℓ.

• Denote
em+2ℓ := em · e2ℓ , m = 1,2, ...,2ℓ − 1.

• e0,e1, ...,e2ℓ−1 is a basis of the real vector space Aℓ
∼= R2ℓ .
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Cayley-Dickson Algebras

• Complex numbers C = A1, quaternions H = A2, octonions
O = A3, sedenions S = A4.

• Aℓ, ℓ ≤ 3, is alternative, i.e.{
(aa)b = a(ab),
a(bb) = (ab)b,

∀ a,b ∈ Aℓ.

• Aℓ, ℓ ≥ 4 is not alternative.
• Let a := e1 − e10 and b := e4 + e15. By directly calculation,

ab = ba = 0, a2 = −2.

Then (aa)b ̸= a(ab) since{
(aa)b = −2b ̸= 0,
a(ab) = a · 0 = 0.
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Slice structure of Quaternions H = A2

• Imaginary units of A2 = H:

SH :=
{

I ∈ H : I2 = −1
}

=
{

x1e1 + x2e2 + x3e3 : xı ∈ R, x2
1 + x2

2 + x2
3 = 1

}
.

• A slice of H:
CI := R+ RI, I ∈ SH.

• Slice structure of H:
H =

⋃
I∈SH

CI .

• For each Ω ⊂ H, denote

ΩI := Ω ∩ CI , ΩR := Ω ∩ R.
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Classical quaternionic analysis

Classcial quaternionic analysis (Fueter, 1934, Comment. Math.
Helv.):

• A function f : Ω ∈ τ(H) → H is called Fueter regular, if it
satisfies the Cauchy-Fueter equation, i.e.(

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
f (x0 + x1i + xj + x3k) = 0.

• q,qn are not Fueter regular.
• Slice quaternionic analysis: Study a class of functions

containing
∑

n∈N qnan which is convengence.
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Slice quaternionic analysis

Slice analysis study two classes of functions:
• Weak slice regular functions (Gentili and Struppa, Adv. Math.,

2007):
• Certain functions which are holomorphic in each slice (CI , I ∈ S).
• Denote by WSR(Ω), Ω ⊂ H.

• Strong slice regular functions (Ghiloni and Perotti, Adv. Math.,
2011, for studying slice analysis in alternative algebras case):

• Induced by a holomorphic stem function.
• Denote by SSR(Ω), Ω ⊂ H.
• Holomorphic stem functions: A kind of vector-valued

holomorphic functions in complex analysis.
• Many properties of SSR(Ω) are induced by holomorphic stem

functions.
• SSR(Ω) ⊂ WSR(Ω).
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Slice quaternionic analysis
Representation formula for WSR(Ω): To find a stem function for a
fixed weak slice regular funcion.

• Case of Ω = B(0,R) := {q ∈ H : |q| < R} (Gentili and Struppa, 2007, Adv.
Math.).

• Case of Ω ⊂ H being symmetric (Colombo, Gentili, Sabadini, Struppa, 2009,
Adv. Math.).

• Case of Ω ⊂ H being non-symmetric (Dou, Ren, Sabadini, accepted by JEMS).
• The representation formula may not hold when Ω is not

symmetric. For example: a weak slice regular extension of
F (z) :=

√
z − J

2 : (0,+∞) + J
2 → R, where J ∈ S.

• A revised formula, called the path-representation formula, hold
for this case.

• To prove path-representation formula, we need introduce a new
topolopy, called the slice topolopy.

• Many result in complex anslysis can be extended to weak slice analysis by
(path-)representation formula.
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Generalized slice analysis

• Weak slice analysis:
• In one variable (on non-symmetric domains): Case of Clifford

algebra Cl0,ℓ (e.g. quaternions H = Cl0,2), octonions O.
• In several variable: on symmetric domains in the weak slice

cone On
s (a subset of the strong slice cone On).

• Strong slice analysis:
• In one/several variable: on symmetric domains in the quadratic

cone (strong slice cone) Qn
A, where A is a real alternative

∗-algebra (e.g. Clm,ℓ, O).
• Our work: Extend weak slice analysis in several variables to

• A case of R2d , which includes real alternative ∗-algebras and
Cayley-Dickson algebras (e.g. sedenions S).

• Our weak slice regular functions are defined on non-symmetric
domains in weak slice cones (a subset of strong slice cones).
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Slice topology

• Slice topology:

τs(H) := {Ω ⊂ H : ΩI ∈ τ(CI), ∀ I ∈ S}.

• We call connected sets in τs, slice-connected sets. We also call
domains in τs, slice-domains, etc.

• τ(H) ⊊ τs(H).
• Example: Ω ∈ τs(H)\τ(H). Here fixed I ∈ SH, and define

Ω :=
⋃
J∈S

ΩJ ,

ΩJ :=

{x + yJ ∈ CJ : x2 +
y2

dist(J,CI)2 < 1}, J ̸= ±I,

{x + yJ ∈ CJ : x2 + y2 < 1}, J = ±I.
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Weak slice regular functions

Definition (Gentili and Struppa, Adv. Math., 2007)
A function f : Ω ∈ τs(H) → H is called weak slice regular, if for each
I ∈ SH, fI := f |ΩI is I-holomorphic, i.e. fI is real differentable and

1
2

(
∂

∂x
+ I

∂

∂y

)
fI(x + yI) = 0, ∀x + yI ∈ ΩI .

• It is easy to check that qnan|CI is I-holomorphic.
• It implies that if

∑
n∈N qnan is convergence, then∑

n∈N qnan ∈ WSR(Ω).
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Representation Formula
• Ω ⊂ H is called symmetric, if Ω = Ω̃, where

Ω̃ :=
⋃

x+yI∈Ω

x + yS.

Theorem (Colombo, Gentili, Sabadini, Struppa, Adv. Math.,
2009)
(Representation Formula) Let Ω ⊂ H is a symmetric slice-domain, and f : Ω → H be
weak slice regular. Then

f (x + yI) = (1, I)F (x , y), ∀x + yI ∈ Ω

where

F (x , y) :=
(

1 J1

1 J2

)−1 (f (x + yJ1)
f (x + yJ2)

)
is independent of the choice of J1, J2 ∈ SH with J1 ̸= J2. F is called the stem function of
f .

• The value of f is decided by two holomorphic functions fJ1 and fJ2 .
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Path-representation Formula

• For any path γ in C and J ∈ SH, define

γJ := PJ ◦ γ,

where PJ : C → CJ , x + yi 7→ x + yJ , ∀x , y ∈ R.

Theorem (Dou, Ren, Sabadini, accepted by JEMS)
(Path-reprentation Formula) Let f : Ω ∈ τs(H) → H be weak slice regular, γ be
a path in C with γ(0) ∈ R. If there are J1, J2 ∈ SH with J1 ̸= J2 and
γJ1 , γJ2 ⊂ Ω, then

f ◦ γI = (1, I)F (γ), ∀ I ∈ SH with γI ⊂ Ω,

where

F (γ) :=

(
1 J1
1 J2

)−1 (f ◦ γJ1

f ◦ γJ2

)
is independent of choice of J1, J2 ∈ SH. F is called a path-stem function of f .
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Strong slice regular functions
In 2011, Ghiloni and Perotti study SSR(Ω), when Ω is symmetric.

• A real finite dimensional alternative algebra A is called a real
alternative ∗-algebra, if there is an imaginary unit in A, i.e.

∅ ̸= SA := {I ∈ A : I2 = −1}.

• The quadratic cone of A:

QA :=
⋃

I∈SA

CI .

• Let Ω be a symmetric domain in QA. Then f : Ω → A is called strong
slice regular if there is a (stem function) F : Ωs → A2×1 such that

f (x + yI) = (1, I)F (x , y), ∀x + yI ∈ Ω

and F is holomorphic, i.e.
1
2

(
∂

∂x
+

(
−1

1

)
∂

∂y

)
F = 0.

where Ωs := {(x , y) ∈ R2 : ∃I ∈ SA, s.t . x + yI ∈ Ω}.
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Strong slice regular functions

• SSR(Ω) = WSR(Ω) when Ω is a symmetric domain in QA.
• Ghiloni and Perotti prove that the part of SSR(Ω) ⊂ WSR(Ω).
• When A is octonions or Clifford algebra Cl0,n.

• SSR(Ω) ⊃ WSR(Ω) holds directly by representation formula.
• Representation formula does not hold for general case, since

J1 − J2 may not be inverse, so is
(

1 J1
1 J2

)
.

• However, representation formula also holds when J1 = −J2.
• It also enough to prove that SSR(Ω) ⊃ WSR(Ω).

• We would like to study WSR(Ω) when Ω be non-symmetric.
• We can not choice J1 to be −J2, since Ω is not symmetric.

• J1 − J2 may not be inverse.
• We will use Moore-Penrose inverse.
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Strong slice regular functions in several variables
• Ghiloni and Perotti (Math. Z., 2022) study a class of strong slice

regular functions SSR(Ω) on Qn
A := (QA)

n, where A is a real
alternative ∗-algebra.

• In case of n = 2, a strong slice regular function f : Ω(⊂ Q2
A) → A

and its stem function F : Ωs(⊂ C2) → A22×1 satisfying
f (x1 + y1I, x2 + y2J) = (1, I, J, IJ)F (x1 + y1i , x2 + y2i) (1)

Here the stem function F is holomorphic, i.e.
1
2

(
∂
∂x1

+ σ1
∂
∂y1

)
F (x1 + y1i , x2 + y2i) = 0,

1
2

(
∂
∂x2

+ σ2
∂
∂y2

)
F (x1 + y1i , x2 + y2i) = 0,

where

σ1 =


−1

1
−1

1

 , σ2 =


−1

−1
1

1

 .

• Example: qk1
1 qk2

2 · · · qkn
n b ∈ SSR(Ω), where b ∈ A.
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Strong slice regular functions in several variables
• The class of strong slice regular functions is not unique, if we

do not consider the holomorphy of f on slice CI × CJ .
• For example, if we replace (1) with

f (x1 + y1I, x2 + y2J) = (1, I, J, JI)F (x1 + y1i , x2 + y2i).

And gain a class of strong slice regular functions, denoted by
SSR1(Ω). Then

q1q2 ∈ SSR(Ω)\SSR1(Ω), q2q1 ∈ SSR1(Ω)\SSR(Ω).

• When A = O, Dou, Ren, Sabadini and Yang (JGA, 2021) study a
class of functions which is holomorphic on CI × CI , ∀ I ∈ SA, i.e.
weak slice regular functions WSR(Ω), where Ω is a symmetric
slice-open set in

O2
s = (QA)

n
s =

⋃
I∈SA

CI × CI ,

Q2
A =

⋃
I,J∈SA

CI × CJ

 .

We call (QA)
n
s weak slice cone and Qn

A strong slice cone.
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Strong slice regular functions in several variables

• If A = O (for general real alternative algebra A is similar) then

SSR(Ω)|(QA)
n
s
= WSR

(
Ω|(QA)

n
s

)
.

• Here SSR(Ω) and WSR(Ω) are both only studied when Ω is
symmetric.

• We want to study slice regular functions defined on some
non-symmetric set Ω.

• It is hard to find a ‘good’ class of ‘holomorphic’ functions defined
on CI × CJ × CK . So we also study weak slice regular functions
defined on a slice-open set on weak slice cone, e.g. (QA)

n
s .
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Weak slice cone
• We replace real alternative ∗-algebra A with R2n and study

WSR(Ω) in this case, (see Dou, Ren, Sabadini,
arXiv:2011.13770).

• A set of complex structures:

C ⊂ {I ∈ End
(
R2n) : I2 = −idR2n}.

with C = −C.
• Weak slice cone:

Wd
C :=

⋃
I∈C

Cd
I ⊂

[
End

(
R2n)]d

.

• Slice topology:

τ
(
Wd

C

)
:=

{
Ω ⊂ W : ΩI ∈ τ

(
Cd

I

)}
.

• Remark: In case of real alternative ∗-algebra A, C corresponds
SA ,and Wd

C corresponds (QA)
n
s .
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Weak slice cone

• Our theory covers not only the real alternative ∗-algebra case,
but also someother algebras called left slice complex structure
algebras, LSCS algebras for short.

• A real finite-dimensional unital algebra A ̸= {0} is called an LSCS
algebra for short, if there is b ∈ A such that Lb is a complex
structure on A.

• Here Lb : A → A, x 7→ bx .
• Certain real left alternative algebras are LSCS algebra.

• Real alternative ∗-algebras are in this case, which includes Clifford
algebras (e.g. complex numbers, quaternions, split-quaternions)
and octonions.

Moreover, Cayley-Dickson algebras Aℓ, ℓ > 0 are LSCS algebras.
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Weak slice cone
• In LSCS algebras case, we set

C = CA := {Lb : b ∈ A, (Lb)
2 = −idA}.

• If A is left alternative, then by LaLa = La2 ,

CA = {La : a ∈ A, a2 = −1} = {La : a ∈ SA}.

• In case of sedenions S,

CS = {a + be8 ∈ SS : a,b ∈ O with ab = ba}

• f : Ω ∈ τs
(
Wd

C
)
→ R2n is called weak slice regular, if

1
2

(
∂

∂xℓ
+ I

∂

∂yℓ

)
f (x + yI) = 0, ∀ x + yI ∈ Ω,

ℓ = 1,2, ...,d .
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Weak slice cone

• By similar method for the case of one quaternionic variable,
many results holds:

• (Splitting Lemma) Let Ω ∈ τs
(
Wd

C
)
. f : Ω → R2n is weak slice

regular if and only if for any I ∈ C and I-basis {ξ1, ...., ξn}, there
are n holomorphic functions F1, ...,Fn : ΩI → CI , such that

fI =
n∑

ℓ=1

(Fℓξℓ).

• (Identity Principle) Let Ω be a slice-domain in Wd
C , and

f ,g : Ω → R2n be weak slice regular. Then
• If ΩR ̸= ∅ and f , g coincide on a non-empty open subset of ΩR,

then f = g on Ω.
• If f , g coincide on a non-empty open subset of ΩI for some I ∈ C,

then f = g on Ω.
(Also need similar method for the case of On

s .)
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Moore-Penrose inverse
• For each A ∈ End(R2n)ℓ×ℓ ∼= R2nℓ×2nℓ, denote by A∗ the

transpose of A ∈ R2nℓ×2nℓ as a real matrix.
• For example, let n = 1, ℓ = 2 and A =

(
I
)

where I =
(

−1
1

)
.

Then

A∗ =

(
I∗

)
=

(
−I

)
and we denote AT :=

(
I

)
.

• Let J ∈ End
(
R2n)k×ℓ. Then there is a unique matrix J+ in

End
(
R2n)ℓ×k (called the Moore-Penrose inverse of J) that

satisfies the Moore-Penrose conditions:
• JJ+J = J, J+JJ+ = J+.
• (JJ+)∗ = JJ+, (J+J)∗ = J+J .

• Fix a complex structure J in R2n with J∗J = idR2n . Then for each
complex structure I ∈ C, we choose a fixed DI ∈ End(R2n) with

I = DIJ(DI)
−1.
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Extension Lemma
• Let J = (J1, ..., Jk ) ∈ Ck . Define

DJ :=

DJ1
. . .

DJk

 , diag(J) :=

J1
. . .

Jk

 ,

and

ζ(J) :=

1 J1
...

...
1 Jk


• We call

ζ+(J) := [DJ · ζ(J)]+DJ

the J-slice inverse of ζ(J).
• Let I ∈ C and J = (J1, ..., Jk ) ∈ Ck . Then

• I[(1, I)ζ+(J)] = [(1, I)ζ+(J)]diag(J).
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Extension Lemma
• For any Ω ⊂ Wd

C , define

P(Cd) := {γ : [0,1] → Cd , γ is a path s.t. γ(0) ∈ Rd};

P
(
Cd ,Ω

)
:=

{
δ ∈ P

(
Cd

)
: ∃ I ∈ C, s.t. δI ⊂ Ω

}
,

and for each γ ∈ P
(
Cd) we define

C(γ,Ω) :=
{

I ∈ C : γI ⊂ Ω
}
.

• Let J = (J1, ..., Jk ) ∈ Ck , Ω ⊂ Wd
C and γ ∈ P(Cd ,Ω). We define

Cker (J) :=

{
I ∈ C : ker(1, I) ⊃

k⋂
ℓ=1

ker(1, Jℓ)

}
,

and
C(Ω, γ, J) := C(Ω, γ) ∩ Cker (J).
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Extension Lemma

Lemma

(Extension Lemma) Let U ∈ τ(Cd), I ∈ C and J = (J1, ..., Jk ) ∈ Ck . If
gℓ : UJℓ → R2n, ℓ = 1, ..., k are holomorphic, then g[I] : U I → R2n

defined by

g[I](x + yI) = (1, I)ζ+(J)g(x + yJ), ∀ x + yi ∈ U,

where

g(x + yJ) =

g1(x + yJ1)
...

gk (x + yJk )


is holomorphic.
Moreover, if UR := U ∩ Rd ̸= ∅, g1 = · · · = gk on UR and I ∈ Cker (J),
then

g[I] = g1 = · · · = gk on UR.
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Key part of the proof.
For each ℓ ∈ {1, ...,d} and x + yi ∈ U ,

1
2

(
∂

∂xℓ
+ I

∂

∂yℓ

)
g[I](x + yI)

=
1
2

(
∂

∂xℓ
+ I

∂

∂yℓ

)
(1, I)ζ+(J)g(x + yJ)

=(1, I)ζ+(J)


1
2

(
∂
∂xℓ

+ J1
∂
∂yℓ

)
. . .

1
2

(
∂
∂xℓ

+ Jk
∂
∂yℓ

)


g1(x + yJ1)
...

gk (x + yJk )



=(1, I)ζ+(J)


1
2

(
∂
∂xℓ

+ J1
∂
∂yℓ

)
g1(x + yJ1)

...
1
2

(
∂
∂xℓ

+ Jk
∂
∂yℓ

)
gk (x + yJk )

 = 0.

Hence g[I] is holomorphic.
Xinyuan Dou (CAS) Weak slice regular functions August 20, 2022 26 / 29



Path-representation Formula

By similar method for the case of one quaternionic variable, we
have

Theorem (Main theorem)
(Path-representation Formula) Let Ω ∈ τs(Wd

C ), γ ∈ P(Cd ,Ω),
J = (J1, J2, ..., Jk ) ∈ [C(γ,Ω)]k and I ∈ C(γ,Ω, J). If f : Ω → R2n is weak
slice regular, then

f ◦ γI = (1, I)F (γ, J),

where

F (γ, J) = ζ+(J)(f ◦ γJ), and f ◦ γJ :=

f ◦ γJ1

...
f ◦ γJk

 .

Xinyuan Dou (CAS) Weak slice regular functions August 20, 2022 27 / 29



Hyper-sigma-ball
• In quaternionic case, let I ∈ SH and a ∈ H, then the domain of

convergence of the series

f (q) =

[∑
n∈N

(
q − I

2

)∗2n]
a,

is the σ-ball

Σ

(
I
2
,1

)
=

 ⋃
J∈SH

PJ

[
B
(

i
2
,1

)
∩ B

(
− i

2
,1

)]⋃{
PI

[
B
(

i
2
,1

)]}
.

• However, in sedenionic case, let I = e1 and a = e4 + e15, then
the domain of convergence is the hyper-σ-ball: ⋃

J∈SS

PJ

[
B
(

i
2
,1

)
∩ B

(
− i

2
,1

)]⋃{ ⋃
K∈S

PK

[
B
(

i
2
,1

)]}
,

where S = {(cos θe1 + sin θe2)(cos θ + sin θe8) : θ ∈ [0, π)}.
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