Holomorphic Vector Bundles on Homogeneous spaces

Rong Du Email: rdu@math.ecnu.edu.cn

East China Normal University

Annual conference on several complex variables Shanghai University, Shanghai, China Aug. 18-20, 2022

Outline

- Background
- 2 Uniform vector bundles
- 3 Lie group, Lie algebra and rational homogeneous space
- 4 Generalized Grauert-Mülich theorem
- 5 Homogeneous vector bundles on homogeneous spaces

Background

One of the fundamental questions in algebraic geometry and complex geometry is the classification problem.

Background

One of the fundamental questions in algebraic geometry and complex geometry is the classification problem. Holomorphic vector bundles are mysterious objects.

Holomorphic vector bundles on \mathbb{P}^n

Everything is over \mathbb{C} , E: holomorphic r-bundle.

Theorem (Grothendieck 1956)

Every r-bundle E over \mathbb{P}^1 (splits) has the form

$$E = \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1}(a_r)$$

with uniquely determined numbers $a_1, \ldots, a_r \in \mathbb{Z}$, $a_1 \geq a_2 \geq \cdots \geq a_r$.

Holomorphic vector bundles on \mathbb{P}^n

Everything is over \mathbb{C} , E: holomorphic r-bundle.

Theorem (Grothendieck 1956)

Every r-bundle E over \mathbb{P}^1 (splits) has the form

$$E = \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1}(a_r)$$

with uniquely determined numbers $a_1, \ldots, a_r \in \mathbb{Z}$, $a_1 \geq a_2 \geq \cdots \geq a_r$.

Question

How about r-bundle over \mathbb{P}^n , $n \geq 2$?

- **2** 1973, Maruyama: indecomposable bundle of rank r > n easier.

- **2** 1973, Maruyama: indecomposable bundle of rank r > n easier.
- **3** 1976, Tango: r = n 1 (n odd), nullcorrelation bundle

$$0 \to N \to T_{\mathbb{P}^n}(-1) \to \mathcal{O}_{\mathbb{P}^n}(1) \to 0.$$

- **2** 1973, Maruyama: indecomposable bundle of rank r > n easier.
- **3** 1976, Tango: r = n 1 (n odd), nullcorrelation bundle

$$0 \to N \to T_{\mathbb{P}^n}(-1) \to \mathcal{O}_{\mathbb{P}^n}(1) \to 0.$$

• rank $r \leq n-2$: is hard.

1 1973, Horrocks and Mumford: n = 4, rank r = 2.

$$0 \to \mathcal{O}_{\mathbb{P}^4} \to E \to I_Y(k) \to 0$$
,

$$Y = \mathbb{C}^2/\Gamma$$
.

1973, Horrocks and Mumford: n = 4, rank r = 2.

$$0 \to \mathcal{O}_{\mathbb{P}^4} \to E \to I_Y(k) \to 0$$
,

$$Y = \mathbb{C}^2/\Gamma$$
.

2 1978, Horrocks: n = 5, rank r = 3.

Hartshorne Conjecture (1974)

Any rank 2 vector bundle over \mathbb{P}^n $(n \geq 7)$ splits into the direct sum of two line bundles.

Hartshorne Conjecture (1974)

Any rank 2 vector bundle over \mathbb{P}^n $(n \geq 7)$ splits into the direct sum of two line bundles.

Orginal Conjecture (1974)

If Y is a nonsingular subvariety of dimension m of \mathbb{P}^n and if $m>\frac{2}{3}n$, then Y is a complete intersection.

Hartshorne Conjecture (1974)

Any rank 2 vector bundle over \mathbb{P}^n $(n \geq 7)$ splits into the direct sum of two line bundles.

Orginal Conjecture (1974)

If Y is a nonsingular subvariety of dimension m of \mathbb{P}^n and if $m>\frac{2}{3}n$, then Y is a complete intersection.

n=5, n=6, r=2 still open!

G(2, n+1): the Grassmann manifold of lines in \mathbb{P}^n .

G(2, n+1): the Grassmann manifold of lines in \mathbb{P}^n .

$$a_E: G(2, n+1) \to \mathbb{Z}^r, \ l \mapsto a_E(l) = (a_1(l), \cdots, a_r(l))$$

where $E|l \cong \bigoplus_{i=1}^r \mathcal{O}_L(a_i(l))$, $a_1(l) \geq \cdots \geq a_r(l)$.

G(2, n+1): the Grassmann manifold of lines in \mathbb{P}^n .

$$a_E: G(2, n+1) \to \mathbb{Z}^r, \ l \mapsto a_E(l) = (a_1(l), \cdots, a_r(l))$$

where $E|l \cong \bigoplus_{i=1}^r \mathcal{O}_L(a_i(l))$, $a_1(l) \geq \cdots \geq a_r(l)$.

Definition

 $a_E(l)$: splitting type of E on l.

E is called uniform if a_E is constant.

Example

$$E=T_{\mathbb{P}^n}$$
 ,

Example

$$E=T_{\mathbb{P}^n}$$
, $H\subset \mathbb{P}^n$: hyperplane, $N_{H/\mathbb{P}^n}=\mathcal{O}_H(1)$.

Example

$$E=T_{\mathbb{P}^n}$$
, $H\subset \mathbb{P}^n$: hyperplane, $N_{H/\mathbb{P}^n}=\mathcal{O}_H(1)$.

$$0 \to T_H \to T_{\mathbb{P}^n}|H \to \mathcal{O}_H(1) \to 0.$$

Example

$$E=T_{\mathbb{P}^n}$$
, $H\subset \mathbb{P}^n$: hyperplane, $N_{H/\mathbb{P}^n}=\mathcal{O}_H(1)$.

$$0 \to T_H \to T_{\mathbb{P}^n}|H \to \mathcal{O}_H(1) \to 0.$$

$$Ext_H^1(\mathcal{O}_H(1), T_H) = 0$$

$$\Rightarrow T_{\mathbb{P}^n}|H=T_H\oplus \mathcal{O}_H(1).$$

By induction and $T_L = \omega_L^* = \mathcal{O}_L(2)$.

Example

$$E=T_{\mathbb{P}^n}$$
, $H\subset \mathbb{P}^n$: hyperplane, $N_{H/\mathbb{P}^n}=\mathcal{O}_H(1)$.

$$0 \to T_H \to T_{\mathbb{P}^n}|H \to \mathcal{O}_H(1) \to 0.$$

$$Ext_H^1(\mathcal{O}_H(1), T_H) = 0$$

$$\Rightarrow T_{\mathbb{P}^n}|H = T_H \oplus \mathcal{O}_H(1).$$

By induction and $T_L = \omega_L^* = \mathcal{O}_L(2)$.

 $T_{\mathbb{P}^n}$ is uniform of splitting type $a_{T_{\mathbb{P}^n}}=(2,1,\cdots,1).$

1 1972, Van de Ven: uniform 2-bundles over \mathbb{P}^n (n > 2) split; uniform 2-bundles over \mathbb{P}^2 :

$$\mathcal{O}_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b), \ T_{\mathbb{P}^2}(a), \ \Omega_{\mathbb{P}^2}(a).$$

• 1972, Van de Ven: uniform 2-bundles over \mathbb{P}^n (n > 2) split; uniform 2-bundles over \mathbb{P}^2 :

$$\mathcal{O}_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b), \ T_{\mathbb{P}^2}(a), \ \Omega_{\mathbb{P}^2}(a).$$

1972, Van de Ven: uniform 2-bundles over \mathbb{P}^n (n > 2) split; uniform 2-bundles over \mathbb{P}^2 :

$$\mathcal{O}_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b), \ T_{\mathbb{P}^2}(a), \ \Omega_{\mathbb{P}^2}(a).$$

2 1976, Sato: uniform r-bundles over \mathbb{P}^n split (2 < r < n).

1972, Van de Ven: uniform 2-bundles over \mathbb{P}^n (n > 2) split; uniform 2-bundles over \mathbb{P}^2 :

$$\mathcal{O}_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b), \ T_{\mathbb{P}^2}(a), \ \Omega_{\mathbb{P}^2}(a).$$

- ② 1976, Sato: uniform r-bundles over \mathbb{P}^n split (2 < r < n).
- **1978**, Elencwajg: uniform 3-bundles over \mathbb{P}^2 (up to dual):

$$\mathcal{O}_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b) \oplus \mathcal{O}_{\mathbb{P}^2}(c), \ T_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b) \quad \text{or} \quad S^2 T_{\mathbb{P}^2}(a),$$

1972, Van de Ven: uniform 2-bundles over \mathbb{P}^n (n > 2) split; uniform 2-bundles over \mathbb{P}^2 :

$$\mathcal{O}_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b), \ T_{\mathbb{P}^2}(a), \ \Omega_{\mathbb{P}^2}(a).$$

- **2** 1976, Sato: uniform r-bundles over \mathbb{P}^n split (2 < r < n).
- **1978**, Elencwajg: uniform 3-bundles over \mathbb{P}^2 (up to dual):

$$\mathcal{O}_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b) \oplus \mathcal{O}_{\mathbb{P}^2}(c), \ T_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b) \quad \text{or} \quad S^2 T_{\mathbb{P}^2}(a),$$

4 1976, Sato: uniform n-bundles over \mathbb{P}^n (n odd):

$$\bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^n}(a_i), T_{\mathbb{P}^n}(a) \text{ or } \Omega^1_{\mathbb{P}^n}(b).$$

1972, Van de Ven: uniform 2-bundles over \mathbb{P}^n (n > 2) split; uniform 2-bundles over \mathbb{P}^2 :

$$\mathcal{O}_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b), \ T_{\mathbb{P}^2}(a), \ \Omega_{\mathbb{P}^2}(a).$$

- 2 1976, Sato: uniform r-bundles over \mathbb{P}^n split (2 < r < n).
- **1978**, Elencwajg: uniform 3-bundles over \mathbb{P}^2 (up to dual):

$$\mathcal{O}_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b) \oplus \mathcal{O}_{\mathbb{P}^2}(c), \ T_{\mathbb{P}^2}(a) \oplus \mathcal{O}_{\mathbb{P}^2}(b) \quad \text{or} \quad S^2 T_{\mathbb{P}^2}(a),$$

1976, Sato: uniform n-bundles over \mathbb{P}^n (n odd):

$$\bigoplus_{i=1}^n \mathcal{O}_{\mathbb{P}^n}(a_i), T_{\mathbb{P}^n}(a) \text{ or } \Omega^1_{\mathbb{P}^n}(b).$$

• 1980, Sato+Elencwajg : complete classify uniform 3-bundles over \mathbb{P}^n .

lacktriangledown 1980 , Elencwajg, Hirschowitz and Schneider: Sato's result is also true for n even.

- lacksquare 1980 , Elencwajg, Hirschowitz and Schneider: Sato's result is also true for n even.
- **2** 1982, Ellia, Ballico independently: uniform (n+1)-bundles $(n \ge 3)$ over \mathbb{P}^n :

$$\bigoplus_{i=1}^{n+1} \mathcal{O}_{\mathbb{P}^n}(a_i), \ T_{\mathbb{P}^n}(a) \oplus \mathcal{O}_{\mathbb{P}^n}(b) \quad \text{or} \quad \Omega^1_{\mathbb{P}^n}(c) \oplus \mathcal{O}_{\mathbb{P}^n}(d).$$

• 1982, Ballico: uniform bundle on quadrics Q split if dim Q $\geq 2r + 2$.

- 1982, Ballico: uniform bundle on quadrics Q split if dim $Q \ge 2r + 2$.
- 2 2002, Kachi-Sato: uniform bundle on quadrics Q split if

```
 \left\{ \begin{array}{ll} \dim \, \mathbb{Q} \geq r+2 & \dim \, \mathbb{Q} \text{ odd} \\ \dim \, \mathbb{Q} \geq r+3 & \dim \, \mathbb{Q} \text{ even.} \end{array} \right.
```


- **1982**, Ballico: uniform bundle on quadrics Q split if dim $Q \ge 2r + 2$.
- 2 2002, Kachi-Sato: uniform bundle on quadrics Q split if

$$\left\{ \begin{array}{ll} \dim \, \mathsf{Q} \geq r+2 & \dim \, \mathsf{Q} \text{ odd} \\ \dim \, \mathsf{Q} \geq r+3 & \dim \, \mathsf{Q} \text{ even.} \end{array} \right.$$

1985, Guyot: uniform d-bundle on Grassmannian G = G(d, n):

$$\bigoplus_{i=1}^{d} \mathcal{O}_G(a_i), \ H_d(a), H_d^{\vee}(b),$$

where H_d is the tautological sub-bundle.

2012, Muñoz-Occhetta-Solá Conde: uniform vector r-bundles on special Fano variety X, $\operatorname{Pic}(X) \simeq \mathbb{Z}$, X covered by a family of rational curves \mathcal{M} , $r \leq \dim \mathcal{M}_x$, $\dim H^{2s}(\mathcal{M}_x, \mathbb{C}) = 1$ for any $x \in X$ and $s \leq \lceil r/2 \rceil$. Then E splits.

2012, Muñoz-Occhetta-Solá Conde: uniform vector r-bundles on special Fano variety X, $\operatorname{Pic}(X) \simeq \mathbb{Z}$, X covered by a family of rational curves \mathcal{M} , $r \leq \dim \mathcal{M}_x$, $\dim H^{2s}(\mathcal{M}_x,\mathbb{C}) = 1$ for any $x \in X$ and $s \leq [r/2]$. Then E splits.

Question (Muñoz-Occhetta-Solá Conde)

Classify low rank uniform principal G-bundles (G semisimple algebraic group) on rational homogeneous spaces.

Rational homogeneous space:

$$G/P \simeq G_1/P_{I_1} \times G_2/P_{I_2} \times \cdots \times G_m/P_{I_m}$$

Rational homogeneous space:

$$G/P \simeq G_1/P_{I_1} \times G_2/P_{I_2} \times \cdots \times G_m/P_{I_m}$$

G: simply connected semi-simple algebraic group (normal connected solvable subgroup is trivial).

Rational homogeneous space:

$$G/P \simeq G_1/P_{I_1} \times G_2/P_{I_2} \times \cdots \times G_m/P_{I_m}$$

G: simply connected semi-simple algebraic group (normal connected solvable subgroup is trivial).

 G_1, \cdots, G_m : simple algebraic groups.

 P_{I_1}, \cdots, P_{I_m} : parabolic subgroup (G_i/P_{I_i}) is complete).

Rational homogeneous space:

$$G/P \simeq G_1/P_{I_1} \times G_2/P_{I_2} \times \cdots \times G_m/P_{I_m}$$

G: simply connected semi-simple algebraic group (normal connected solvable subgroup is trivial).

 G_1, \cdots, G_m : simple algebraic groups.

 P_{I_1}, \cdots, P_{I_m} : parabolic subgroup (G_i/P_{I_i}) is complete).

 G_i/P_{I_i} : generalized flag manifold.

Lie group-Lie algebra correspondence allows one to study Lie groups, which are geometric objects, in terms of Lie algebras, which are linear objects.

Lie group-Lie algebra correspondence allows one to study Lie groups, which are geometric objects, in terms of Lie algebras, which are linear objects.

G: semi-simple Lie group $\leadsto \mathfrak{g}$: semi-simple Lie algebra

Lie group-Lie algebra correspondence allows one to study Lie groups, which are geometric objects, in terms of Lie algebras, which are linear objects.

G: semi-simple Lie group $\leadsto \mathfrak{g}$: semi-simple Lie algebra $H \subset G$: a maximal torus $\leadsto \mathfrak{h} \subset \mathfrak{g}$: Cartan subalgebra (abelian subalgebra of maximal dimension)

Lie group-Lie algebra correspondence allows one to study Lie groups, which are geometric objects, in terms of Lie algebras, which are linear objects.

G: semi-simple Lie group $\leadsto \mathfrak{g}$: semi-simple Lie algebra $H \subset G$: a maximal torus $\leadsto \mathfrak{h} \subset \mathfrak{g}$: Cartan subalgebra (abelian subalgebra of maximal dimension) Cartan decomposition:

$$\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{lpha\in\mathfrak{h}^ee\setminus\{0\}}\mathfrak{g}_lpha,$$

where

$$\mathfrak{g}_{\alpha}:=\{g\in\mathfrak{g}|ad_{\mathfrak{g}}(h)(g)=\alpha(h)g, \text{ for all }h\in\mathfrak{h}\}$$

$$ad_{\mathfrak{g}}: \text{adjoint representation}$$

∢□ > ∢□ > ∢□ > ∢□ > ∢□ > √□

$$\Phi = \{\alpha \in \mathfrak{h}^{\vee} \setminus \{0\} | \mathfrak{g}_{\alpha} \neq 0\} : \text{ root system }$$

$$\Phi = \{\alpha \in \mathfrak{h}^{\vee} \setminus \{0\} | \mathfrak{g}_{\alpha} \neq 0\} : \text{ root system}$$
 Fix a linear functional

$$f:\operatorname{span}_{\mathbb{R}}\Phi o\mathbb{R}$$

whose kernel does not intersect Φ . Let

$$\Phi^+ := \{ \alpha \in \Phi | f(\alpha) > 0 \} \text{ and } \Phi^- := \{ \alpha \in \Phi | f(\alpha) < 0 \}.$$

$$\Phi = \{\alpha \in \mathfrak{h}^{\vee} \setminus \{0\} | \mathfrak{g}_{\alpha} \neq 0\} : \text{ root system}$$
 Fix a linear functional

$$f:\operatorname{span}_{\mathbb{R}}\Phi o\mathbb{R}$$

whose kernel does not intersect Φ . Let

$$\Phi^+:=\{\alpha\in\Phi|f(\alpha)>0\} \text{ and } \Phi^-:=\{\alpha\in\Phi|f(\alpha)<0\}.$$

simple system $\Pi = \{\alpha_1, \dots, \alpha_n\} \subset \Phi^+ \colon \alpha \in \Pi \Leftrightarrow \alpha \in \Phi^+ \text{ and } \alpha$ cannot be expressed as the sum of two elements of Φ^+ .

Killing form: $(\alpha, \beta) := tr(\mathsf{ad}_{\alpha} \circ \mathsf{ad}_{\beta})$ defines a nondegenerated bilinear form on \mathfrak{h} , where $\alpha, \beta \in \mathfrak{g}$.

Killing form: $(\alpha, \beta) := tr(\mathsf{ad}_\alpha \circ \mathsf{ad}_\beta)$ defines a nondegenerated bilinear form on \mathfrak{h} , where $\alpha, \beta \in \mathfrak{g}$.

Cartan matrix: $A = (A_{ij})$,

$$A_{ij} := <\alpha_i, \alpha_j> = 2\frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)} \in \mathbb{Z}, \quad i, j = 1, \dots n.$$

Dynkin diagram:

- nodes $\leftrightarrow \Pi = \{\alpha_1, \dots, \alpha_n\}$
- \sharp edges connecting α_i and $\alpha_j = A_{ij}A_{ji}$
- arrow for double or triple edges from α_j to α_i if $|A_{ij}| > |A_{ji}|$ (α_i : short root; α_j : long root)

Dynkin diagrams

$$A_n: \stackrel{1}{\circ} \stackrel{2}{\circ} \cdots \stackrel{n-1}{\circ} \stackrel{n}{\circ}$$

$$D_n: \stackrel{1}{\circ} \stackrel{2}{\circ} \cdots \stackrel{n-2}{\circ} \stackrel{n-1}{\circ} \stackrel{n-1}{\circ}$$

$$E_6: \stackrel{2}{\circ} \stackrel{2}{\circ} \stackrel{2}{\circ} \stackrel{2}{\circ}$$

$$E_7: \stackrel{2}{\circ} \stackrel{2}{\circ} \stackrel{2}{\circ} \stackrel{2}{\circ} \stackrel{3}{\circ} \stackrel{4}{\circ} \stackrel{5}{\circ} \stackrel{6}{\circ} \stackrel{7}{\circ}$$

$$E_8: \stackrel{2}{\circ} \stackrel{2}{\circ} \stackrel{2}{\circ} \stackrel{3}{\circ} \stackrel{3}{\circ} \stackrel{3}{\circ} \stackrel{7}{\circ} \stackrel{8}{\circ}$$

$$B_n: \stackrel{1}{\circ} \stackrel{2}{\circ} \cdots \stackrel{n-1}{\circ} \stackrel{n}{\circ}$$

$$C_n: \circ \longrightarrow \cdots \circ \longrightarrow \circ \longrightarrow \circ$$

$$F_4: \circ \longrightarrow \circ \longrightarrow \circ$$

$$1 \quad 2 \quad 3 \quad 4$$

$$G_2: \circ \longrightarrow \circ$$

Parabolic subgroup and subalgebra

 $B \leq G$: Borel subgroup (maximal connected solvable subgroup)

$$\leadsto \mathfrak{h} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi^-} \mathfrak{g}_{\alpha} : \mathsf{Borel\ subalgebra}$$

Parabolic subgroup and subalgebra

 $B \leq G$: Borel subgroup (maximal connected solvable subgroup)

$$ightsquigarrow \mathfrak{b} = \mathfrak{h} \oplus \bigoplus_{lpha \in \Phi^-} \mathfrak{g}_lpha :$$
 Borel subalgebra

 $P \leq G$: parabolic subgroup

$$ightarrow \mathfrak{p} = \mathfrak{b} \oplus \bigoplus_{lpha \in \Phi_I^+} \mathfrak{g}_lpha : ext{ parabolic subalgebra},$$

where

$$\Phi_I^+ := \{ \alpha \in \Phi^+ | \alpha = \sum_{\alpha_i \notin I} p_i \alpha_i \}, \ I \subseteq \Pi.$$

Parabolic subgroup and subalgebra

 $B \leq G$: Borel subgroup (maximal connected solvable subgroup)

$$ightsquigarrow \mathfrak{b} = \mathfrak{h} \oplus \bigoplus_{lpha \in \Phi^-} \mathfrak{g}_lpha :$$
 Borel subalgebra

 $P \leq G$: parabolic subgroup

$$ightarrow \mathfrak{p} = \mathfrak{b} \oplus \bigoplus_{lpha \in \Phi_I^+} \mathfrak{g}_lpha :$$
 parabolic subalgebra,

where

$$\Phi_I^+ := \{ \alpha \in \Phi^+ | \alpha = \sum_{\alpha_i \notin I} p_i \alpha_i \}, \ I \subseteq \Pi.$$

So we use notation \mathfrak{p}_I and P_I .

Rational homogeneous space:

$$G/P \simeq G_1/P_{I_1} \times G_2/P_{I_2} \times \cdots \times G_m/P_{I_m}$$

 G_1, \cdots, G_m : simply connected simple algebraic groups. P_{I_1}, \cdots, P_{I_m} : parabolic subgroup.

Rational homogeneous space:

$$G/P \simeq G_1/P_{I_1} \times G_2/P_{I_2} \times \cdots \times G_m/P_{I_m}$$

 G_1, \cdots, G_m : simply connected simple algebraic groups.

 P_{I_1}, \cdots, P_{I_m} : parabolic subgroup.

 G_i/P_{I_i} depends on the Lie algebra \mathfrak{g}_i of G_i , which is classically determined by the marked Dynkin diagram (marked nodes corresponding to I_i).

Rational homogeneous space:

$$G/P \simeq G_1/P_{I_1} \times G_2/P_{I_2} \times \cdots \times G_m/P_{I_m}$$

 G_1, \dots, G_m : simply connected simple algebraic groups.

 P_{I_1}, \cdots, P_{I_m} : parabolic subgroup.

 G_i/P_{I_i} depends on the Lie algebra \mathfrak{g}_i of G_i , which is classically determined by the marked Dynkin diagram (marked nodes corresponding to I_i).

For instance, numbering the nodes of A_n , the usual flag manifold $F(d_1,\ldots,d_s;n+1)$ corresponds to the marking of $I=\{d_1,\ldots,d_s\}$

Rational homogeneous space:

$$G/P \simeq G_1/P_{I_1} \times G_2/P_{I_2} \times \cdots \times G_m/P_{I_m}$$

 G_1, \cdots, G_m : simply connected simple algebraic groups.

 P_{I_1}, \cdots, P_{I_m} : parabolic subgroup.

 G_i/P_{I_i} depends on the Lie algebra \mathfrak{g}_i of G_i , which is classically determined by the marked Dynkin diagram (marked nodes corresponding to I_i).

For instance, numbering the nodes of A_n , the usual flag manifold $F(d_1,\ldots,d_s;n+1)$ corresponds to the marking of $I=\{d_1,\ldots,d_s\}$

The two extremal cases: generalized complete flag manifolds (all nodes marked), generalized Grassmannians (only one node marked).

Lines on rational homogeneous spaces

Theorem (Landsberg-Manivel 2003)

Let $I \subseteq D = \{1, ..., n\}$. Suppose G to be a simple Lie group. Consider $X = G/P_I$ in its minimal homogeneous embedding. Denote by $F_1(X)$ the space of $\mathbb{P}^{1,s}$ in X. Then

- $F_1(X) = \coprod_{j \in I} F_1^j(X)$, where $F_1^j(X)$ is the space of lines of class $\check{\alpha}_j \in H_2(X, \mathbb{Z})$.
- ② If α_j is not an exposed short root, then $F_1^j(X) = G/P_{(I \setminus j) \cup N(j)}$.
- **3** If α_j is an exposed short root, then $F_1^j(X)$ is the union of two G-orbits, an open orbit and its boundary $G/P_{(I\setminus j)\cup N(j)}$ (called special family of lines).

Lines on rational homogeneous spaces

Definition

We call $\alpha_j (j \in I)$ an exposed short root if the connected component of j in $D \setminus (I \setminus j)$ contains root longer than α_j , i.e., if an arrow in $D \setminus (I \setminus j)$ points towards j.

Lines on rational homogeneous spaces

Definition

We call $\alpha_j (j \in I)$ an exposed short root if the connected component of j in $D \setminus (I \setminus j)$ contains root longer than α_j , i.e., if an arrow in $D \setminus (I \setminus j)$ points towards j.

Example

 A_n , i.e. $X=SL_{n+1}/P_I$ is the generalized flag manifold. For $I=\{k\},\ X$ is the usual Grassmannian and $F_1(X)$ is just the variety of lines on X.

Theorem (D-Gao-Fang 2021)

Suppose that E is a uniform r-bundle of a generalized Grassmann $\mathcal G$ with respect to the special family of lines. If $r \leq \varsigma(\mathcal G)$, then E splits as a direct sum of line bundles.

Table: $\varsigma(\mathcal{G})$

G	$A_n/P_1 \\ A_n/P_n$	$B_n/P_1 \\ B_n/P_n$	C_n/P_1 C_n/P_n	$D_n/P_1 \\ D_n/P_{n-1} \\ D_n/P_n$	$E_6/P_1 \ E_6/P_2 \ E_6/P_6$	$E_7/P_1 \\ E_7/P_2 \\ E_7/P_7$	$E_8/P_1 \ E_8/P_2 \ E_8/P_8$	$F_4/P_1 \\ F_4/P_4$	$\frac{G_2/P_1}{G_2/P_2}$
$\varsigma(G)$		$2n-3\\n-1$	$2n-3\\n-1$	2n - 5 $n - 1$ $n - 1$	7 5 7	9 6 12	11 7 14	5 5	1 1

Consider rational homogeneous space X = G/P. If $\delta_i \in I_i$, we call

$$\mathcal{M}_{i}^{\delta_{i}^{c}} := G_{i}/P_{i}^{\delta_{i}^{c}} \times \widehat{G_{i}/P_{I_{i}}} \ (1 \leq i \leq m),$$

the i-th special family of lines, where $P_i^{\delta_i^c}:=P_{(I_i\setminus \delta_i)\cup N(\delta_i)}$ and $\widehat{G_i/P_{I_i}}$ is $G_1/P_{I_1}\times G_2/P_{I_2}\times \cdots \times G_m/P_{I_m}$ by deleting i-th term G_i/P_{I_i} .

Consider rational homogeneous space X = G/P. If $\delta_i \in I_i$, we call

$$\mathcal{M}_{i}^{\delta_{i}^{c}} := G_{i}/P_{i}^{\delta_{i}^{c}} \times \widehat{G_{i}/P_{I_{i}}} \ (1 \leq i \leq m),$$

the i-th special family of lines, where $P_i^{\delta_i^c}:=P_{(I_i\setminus \delta_i)\cup N(\delta_i)}$ and $\widehat{G_i/P_{I_i}}$ is $G_1/P_{I_1}\times G_2/P_{I_2}\times \cdots \times G_m/P_{I_m}$ by deleting i-th term G_i/P_{I_i} .

Definition

A vector bundle E on X is called poly-uniform with respect to $\mathcal{M}_i^{\delta_i^c}$ for every $i\ (1 \leq i \leq m)$ and every $\delta_i \in I_i$ if the restriction of E to every line in $\mathcal{M}_i^{\delta_i^c}$ has the same splitting type. We also call that E poly-uniform with respect to all the special families of lines.

δ_i -slope

Let \mathscr{F} be a torsion free coherent sheaf of rank r over X. Fix integer i $(1 \leq i \leq m)$ and $\delta_i \in I_i$.

δ_i -slope

Let \mathscr{F} be a torsion free coherent sheaf of rank r over X. Fix integer i $(1 \leq i \leq m)$ and $\delta_i \in I_i$. Since the singularity set $S(\mathscr{F})$ of \mathscr{F} has codimension at least 2, there are lines $L \in \mathcal{M}_i^{\delta_i^c}$ which do not meet $S(\mathscr{F})$.

δ_i -slope

Let \mathscr{F} be a torsion free coherent sheaf of rank r over X. Fix integer i $(1 \leq i \leq m)$ and $\delta_i \in I_i$. Since the singularity set $S(\mathscr{F})$ of \mathscr{F} has codimension at least 2, there are lines $L \in \mathcal{M}_i^{\delta_i^c}$ which do not meet $S(\mathscr{F})$. If

$$\mathscr{F}|L\cong \mathcal{O}_L(a_1^{(\delta_i)})\oplus\cdots\oplus\mathcal{O}_L(a_r^{(\delta_i)}),$$

we set

$$c_1^{(\delta_i)}(\mathscr{F}) = a_1^{(\delta_i)} + \dots + a_r^{(\delta_i)}$$

and

$$\mu^{(\delta_i)}(\mathscr{F}) = \frac{c_1^{(\delta_i)}(\mathscr{F})}{\operatorname{rk}(\mathscr{F})},$$

which are independent of the choice of L.

δ_i -semistable

Definition

A torsion free coherent sheaf $\mathscr E$ over X is δ_i -semistable if for every coherent subsheaf $\mathscr F\subseteq \mathcal E$, we have

$$\mu^{(\delta_i)}(\mathscr{F}) \leq \mu^{(\delta_i)}(\mathcal{E}).$$

If E is not δ_i -semistable, then we call E is δ_i -unstable.

Denote $\nu(X, \delta_i) := \varsigma(\mathcal{G}^{\delta_i})$, where $\varsigma(\mathcal{G}^{\delta_i})$ are defined as in Table. Let $\nu(X) := \min_i \{ \min_{\delta_i \in I_i} \{ \nu(X, \delta_i) \} \}.$

Denote $\nu(X, \delta_i) := \varsigma(\mathcal{G}^{\delta_i})$, where $\varsigma(\mathcal{G}^{\delta_i})$ are defined as in Table. Let

$$\nu(X) := \min_i \{ \min_{\delta_i \in I_i} \{ \nu(X, \delta_i) \} \}.$$

Theorem (D-Gao-Fang 2021)

On X, if an r-bundle E is poly-uniform with respect to all the special families of lines and $r \leq \nu(X)$, then E is δ_i -unstable for some δ_i $(1 \leq i \leq m)$ or E splits as a direct sum of line bundles.

Grauert-Mülich theorem on \mathbb{P}^n

$$a_E: G = G(2, n+1) \to \mathbb{Z}^r$$
, $a_E(l) = (a_1(l), \dots, a_r(l))$, $a_1(l) \ge \dots \ge a_r(l)$

$$a_E: G = G(2, n+1) \to \mathbb{Z}^r$$
, $a_E(l) = (a_1(l), \dots, a_r(l))$, $a_1(l) \ge \dots \ge a_r(l)$

Give \mathbb{Z}^r lexicographical ordering: $(a_1, \dots, a_r) \leq (b_1, \dots, b_r)$ if the first non-zero difference $b_i - a_i$ is positive.

$$a_E: G = G(2, n+1) \to \mathbb{Z}^r$$
, $a_E(l) = (a_1(l), \dots, a_r(l))$, $a_1(l) \ge \dots \ge a_r(l)$

Give \mathbb{Z}^r lexicographical ordering: $(a_1, \dots, a_r) \leq (b_1, \dots, b_r)$ if the first non-zero difference $b_i - a_i$ is positive.

Let

$$\underline{a}_E = \mathsf{inf}_{l \in G} a_E(l)$$

Definition

 $S_E=\{l\in G|a_E(l)>\underline{a}_E\}$ is the set of jumping lines. \underline{a}_E is the generic splitting type of E.

$$a_E: G = G(2, n+1) \to \mathbb{Z}^r$$
, $a_E(l) = (a_1(l), \dots, a_r(l))$, $a_1(l) \ge \dots \ge a_r(l)$

Give \mathbb{Z}^r lexicographical ordering: $(a_1, \dots, a_r) \leq (b_1, \dots, b_r)$ if the first non-zero difference $b_i - a_i$ is positive.

Let

$$\underline{a}_E = \inf_{l \in G} a_E(l)$$

Definition

 $S_E = \{l \in G | a_E(l) > \underline{a}_E \}$ is the set of jumping lines. \underline{a}_E is the generic splitting type of E.

Remark: $U_E = G \setminus S_E$ is a non-empty Zariski open subset of G.

Theorem (Grauert-Mülich 1977)

Let E be a semistable 2-bundle over \mathbb{P}^n and the generic splitting type of E is (a_1, a_2) . Then $a_1 - a_2 = 0$ or 1.

Theorem (Grauert-Mülich 1977)

Let E be a semistable 2-bundle over \mathbb{P}^n and the generic splitting type of E is (a_1, a_2) . Then $a_1 - a_2 = 0$ or 1.

Question (Hartshorne 1977)

What are the possible values of a_i for the general line for r-bundle?

Theorem (Grauert-Mülich 1977)

Let E be a semistable 2-bundle over \mathbb{P}^n and the generic splitting type of E is (a_1, a_2) . Then $a_1 - a_2 = 0$ or 1.

Question (Hartshorne 1977)

What are the possible values of a_i for the general line for r-bundle?

Theorem (Splindler 1979)

Let E be a semistable r-bundle over \mathbb{P}^n . Then $a_i-a_{i+1}=0$ or 1, $i=1,\ldots,r-1$.

Generalized Grauert-Mülich theorem

Theorem (Guyot 1985)

Let E be a semistable r-bundle over Grassmannian and the generic splitting type of E is (a_1, \dots, a_r) . Then $a_i - a_{i+1} = 0$ or 1, $i = 1, \dots, r-1$.

Generalized Grauert-Mülich theorem

Theorem (D-Gao-Fang 2021)

Fix $\delta_i \in I_i$. Let E be an r-bundle over X of general splitting type $\underline{a}_E^{(\delta_i)} = (a_1^{(\delta_i)}, \dots, a_r^{(\delta_i)})$, where $a_1^{(\delta_i)} \geq \dots \geq a_r^{(\delta_i)}$, with respect to $\mathcal{M}_i^{\delta_i^c}$. For a δ_i -semistable r-bundle E over X of general splitting type $\underline{a}_E^{(\delta_i)} = (a_1^{(\delta_i)}, \dots, a_r^{(\delta_i)})$, where $a_1^{(\delta_i)} \geq \dots \geq a_r^{(\delta_i)}$, with respect to $\mathcal{M}_i^{\delta_i^c}$ and all $s = 1, \dots, r-1$, we have

$$a_s^{(\delta_i)} - a_{s+1}^{(\delta_i)} \leq \left\{ \begin{array}{l} 1, & \text{if } \delta_i \text{ is not an exposed short root;} \\ 2, & \text{if } \delta_i \text{ is an exposed short root and } \delta_i \notin \mathcal{D}(G_2); \\ 3, & \text{if } \delta_i \text{ is an exposed short root and } \delta_i \in \mathcal{D}(G_2). \end{array} \right.$$

Homogeneous vector bundles on \mathbb{P}^n :

Definition

An r-bundle E over \mathbb{P}^n is homogeneous if for every projective transformation $t \in PGL(n+1,\mathbb{C})$, we have $t^*E = E$.

Homogeneous vector bundles on \mathbb{P}^n :

Definition

An r-bundle E over \mathbb{P}^n is homogeneous if for every projective transformation $t\in PGL(n+1,\mathbb{C})$, we have $t^*E=E$.

1980, Drezet: There are uniform but non-homogeneous bundles on \mathbb{P}^n of rank 2n.

Homogeneous vector bundles on \mathbb{P}^n :

Definition

An r-bundle E over \mathbb{P}^n is homogeneous if for every projective transformation $t \in PGL(n+1,\mathbb{C})$, we have $t^*E = E$.

1980, Drezet: There are uniform but non-homogeneous bundles on \mathbb{P}^n of rank 2n.

Conjecture

Every uniform vector bundle of rank r < 2n is homogeneous.

Uniform and homogeneous vector bundles on \mathbb{P}^n

1982, Ballico: classified homogeneous bundles of rank r < 2n.

Uniform and homogeneous vector bundles on \mathbb{P}^n

1982, Ballico: classified homogeneous bundles of rank r < 2n.

Conjecture

Every rank r < 2n uniform vector bundle on \mathbb{P}^n is a direct sum of bundles chosen among:

$$S^2T_{\mathbb{P}^2}(a), \wedge^2T_{\mathbb{P}^4}(b), T_{\mathbb{P}^n}(c), \Omega_{\mathbb{P}^n}(d), \mathcal{O}_{\mathbb{P}^n}(e).$$

G/P: rational homogeneous variety, G simply connected and semi-simple group, P parabolic subgroup

Definition

Over G/P, a vector bundle E is called *homogeneous* if there exists an action G over E such that the following diagram commutes

$$\begin{array}{ccc} G \times E \longrightarrow E \\ & \downarrow & \\ G \times G/P \longrightarrow G/P. \end{array}$$

G/P: rational homogeneous variety, G simply connected and semi-simple group, P parabolic subgroup

Definition

Over G/P, a vector bundle E is called *homogeneous* if there exists an action G over E such that the following diagram commutes

$$\begin{array}{ccc} G \times E \longrightarrow E \\ \downarrow & \downarrow \\ G \times G/P \longrightarrow G/P. \end{array}$$

Definition

A vector bundle E over G/P is homogeneous \Leftrightarrow

$$\theta_q^* E = E, \forall \theta_g \in Aut(G/P), g \in G.$$

Let
$$\rho:P o GL(r)$$
 be a representation. In $G imes\mathbb{C}^r$,
$$(g,v)\sim (g',v')\Leftrightarrow \exists p\in P \text{ such that } g=g'p \text{ and } v=\rho(p^{-1})v'.$$

$$E_{\rho}=G imes_{\rho}\mathbb{C}^r:=G imes\mathbb{C}^r/\sim.$$

Let $\rho:P\to GL(r)$ be a representation. In $G\times \mathbb{C}^r$,

$$(g,v) \sim (g',v') \Leftrightarrow \exists p \in P \text{ such that } g = g'p \text{ and } v = \rho(p^{-1})v'.$$

$$E_{\rho} = G \times_{\rho} \mathbb{C}^r := G \times \mathbb{C}^r / \sim.$$

Theorem (Matsushima)

A r-bundle E over G/P is homogeneous \Leftrightarrow there exists a representation $\rho: P \to GL(r)$ such that $E \simeq E_{\rho}$.

A weight λ of G: linear function $\lambda:\mathfrak{h}\to\mathbb{C}$ such that $\frac{2(\lambda,\alpha)}{(\alpha,\alpha)}\in\mathbb{Z}$ for all $\alpha\in\Phi$.

A weight λ of G: linear function $\lambda:\mathfrak{h}\to\mathbb{C}$ such that $\frac{2(\lambda,\alpha)}{(\alpha,\alpha)}\in\mathbb{Z}$ for all $\alpha\in\Phi$.

 $\Pi = \{\alpha_1, ..., \alpha_n\} \subseteq \Phi$ be a set of fixed simple roots.

fundamental dominant weights λ_i : if $\frac{2(\lambda_i, \alpha_j)}{(\alpha_j, \alpha_j)} = \delta_{ij}, \forall j$.

A weight λ of G: linear function $\lambda:\mathfrak{h}\to\mathbb{C}$ such that $\frac{2(\lambda,\alpha)}{(\alpha,\alpha)}\in\mathbb{Z}$ for all $\alpha\in\Phi$.

 $\Pi = \{\alpha_1, ..., \alpha_n\} \subseteq \Phi$ be a set of fixed simple roots.

fundamental dominant weights λ_i : if $\frac{2(\lambda_i, \alpha_j)}{(\alpha_j, \alpha_j)} = \delta_{ij}, \forall j$.

Proposition

Let $I = \{\alpha_1, \dots, \alpha_k\}$ be a subset of simple roots. Let $\lambda_1, \dots, \lambda_k$ be the corresponding fundamental weights. Then all the irreducible representations of P_I are

$$V \otimes L_{\lambda_1}^{n_1} \otimes \cdots \otimes L_{\lambda_k}^{n_k},$$

where V is a representation of S_P (the semisimple part of P), $n_i \in \mathbb{Z}$ and L_{λ_i} is a one-dimensional representation with weight λ_i .

A weight λ of G: linear function $\lambda:\mathfrak{h}\to\mathbb{C}$ such that $\frac{2(\lambda,\alpha)}{(\alpha,\alpha)}\in\mathbb{Z}$ for all $\alpha \in \Phi$.

 $\Pi = \{\alpha_1, ..., \alpha_n\} \subseteq \Phi$ be a set of fixed simple roots.

fundamental dominant weights λ_i : if $\frac{2(\lambda_i, \alpha_j)}{(\alpha_i, \alpha_i)} = \delta_{ij}, \forall j$.

Proposition

Let $I = \{\alpha_1, \dots, \alpha_k\}$ be a subset of simple roots. Let $\lambda_1, \dots, \lambda_k$ be the corresponding fundamental weights. Then all the irreducible representations of P_I are

$$V \otimes L_{\lambda_1}^{n_1} \otimes \cdots \otimes L_{\lambda_k}^{n_k},$$

where V is a representation of S_P (the semisimple part of P), $n_i \in \mathbb{Z}$ and L_{λ_i} is a one-dimensional representation with weight λ_i .

So the irreducible representation of P_I is determined by its highest weight.

Arithmetically Cohen-Macaulay bundle

Definition

A vector bundle E on a smooth projective variety X is called arithmetically Cohen-Macaulay (ACM) if $H^i(X, E(t))$ for $0 < i < \dim X$ and all $t \in \mathbb{Z}$.

Arithmetically Cohen-Macaulay bundle

Definition

A vector bundle E on a smooth projective variety X is called arithmetically Cohen-Macaulay (ACM) if $H^i(X,E(t))$ for $0 < i < \dim X$ and all $t \in \mathbb{Z}$.

Theorem (Horrocks)

ACM bundles on \mathbb{P}^n split.

Arithmetically Cohen-Macaulay bundle

Definition

A vector bundle E on a smooth projective variety X is called arithmetically Cohen-Macaulay (ACM) if $H^i(X, E(t))$ for $0 < i < \dim X$ and all $t \in \mathbb{Z}$.

Theorem (Horrocks)

ACM bundles on \mathbb{P}^n split.

2016, Costa and Miró-Roig: classify the irreducible homogeneous ACM bundles on Grassmannians

Definition

Given a projective variety $(X, \mathcal{O}_X(1))$, a vector bundle E on X is called *initialized* if

$$H^0(X, E(-1)) = 0$$

and

$$H^0(X, E) \neq 0.$$

Definition

Given a projective variety $(X, \mathcal{O}_X(1))$, a vector bundle E on X is called *initialized* if

$$H^0(X, E(-1)) = 0$$

and

$$H^0(X, E) \neq 0.$$

Theorem (D-Fang-Ren, ≥ 2022)

Let E_{λ} be an initialized irreducible homogeneous vector bundle with highest weight λ over $G/P(\alpha_k)$ of type B, C or D. Let $T_{k,\lambda}=(t_{ij})$ be its step matrix. Denote $n_l:=\#\{t_{ij}|t_{ij}=l\}$. Then E_{λ} is an ACM bundle if and only if $n_l\geq 1$ for any integer $l\in [1,M_{k,\lambda}]$, where $M_{k,\lambda}=max\{t_{ij}\}$.

Example

Let E_{μ} be initialized homogeneous bundles with highest weight $\mu=4\lambda_1+4\lambda_2$ on $OG(3,11)=B_5/P(\alpha_3)$. We can get that $T_{3.\mu}^B=(P_{3.\mu}^B,Q_{3.\mu}^B,R_{3.\mu}^B)$, where

$$P^B_{3,\mu} = \begin{pmatrix} 1 & 2 \\ 6 & 7 \\ 11 & 12 \end{pmatrix}, \ Q^B_{3,\mu} = \begin{pmatrix} 3 & 4 \\ 8 & 9 \\ 13 & 14 \end{pmatrix}, \ R^B_{3,\mu} = \begin{pmatrix} \frac{5}{2} & 5 & \frac{15}{2} \\ 0 & \frac{15}{2} & 10 \\ 0 & 0 & \frac{25}{2} \end{pmatrix},$$

 $M^B_{3,\mu}=14$ and $n_l\geq 1$ for any integer $l\in [1,14].$

Corrolary

There are only finitely many irreducible homogeneous ACM bundles up to tensoring a line bundle over $G/P(\alpha_k)$ of types B, C and D. In particular, the moduli space of projective bundles produced by irreducible homogeneous ACM bundles consists of finite points.

Thank you!

