Projective embedding of log pairs of Projective varieties and K-stability

Jingzhou Sun

Department of Mathematics Shantou University

Shanghai, August 2022

・ロト ・ ア・ ・ ヨト ・ ヨト

æ

Jingzhou Sun , Shantou University Log Riemann Surfaces

Jingzhou Sun , Shantou University Log Riemann Surfaces

イロン イボン イヨン イヨン

3

Conjecture (Yau-Tian-Donaldson)

Let (X, L) be a polarised manifold. $c_1(L)$ contains a constant scalar curvature Kähler (CSCK) metric if and only if (X, L) is K-polystable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

One direction

Theorem (Donaldson, Stoppa, Mabuchi)

If $c_1(L)$ contains a CSCK metric then (X, L) is K-polystable.

Jingzhou Sun , Shantou University Log Riemann Surfaces

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

On the side of algebraic geometry

Chow Stability for subvarieties of \mathbb{CP}^n which can be expressed by moment map

For any $z \in \mathbb{CP}^n$ with homogeneous coordinates $Z = [z_0, z_1, \cdots, z_n]^t$, the moment map for the SU(n + 1) action on \mathbb{CP}^n is

$$\mu(z) = \frac{ZZ^*}{|Z|^2} - \textit{Trace} \in \textit{Lie}(SU(n+1))$$

Definition (Center of mass)

Let $V \subset \mathbb{CP}^n$ be a subvariety, then the center of mass of V is

$$\mu(V) = \int_V \frac{ZZ^*}{|Z|^2} d\mu_{FS} - Trace$$

V is called *balanced* if $\mu(V) = 0$

On the side of algebraic geometry

Chow Stability for subvarieties of \mathbb{CP}^n which can be expressed by moment map For any $z \in \mathbb{CP}^n$ with homogeneous coordinates $Z = [z_0, z_1, \cdots, z_n]^t$, the moment map for the SU(n + 1) action on \mathbb{CP}^n is

$$\mu(z) = rac{ZZ^*}{|Z|^2} - \mathit{Trace} \in \mathit{Lie}(\mathit{SU}(n+1))$$

Definition (Center of mass)

Let $V \subset \mathbb{CP}^n$ be a subvariety, then the center of mass of V is

$$\mu(V) = \int_V rac{ZZ^*}{|Z|^2} d\mu_{FS} - Trace$$

V is called *balanced* if $\mu(V) = 0$

On the side of algebraic geometry

Chow Stability for subvarieties of \mathbb{CP}^n which can be expressed by moment map For any $z \in \mathbb{CP}^n$ with homogeneous coordinates $Z = [z_0, z_1, \cdots, z_n]^t$, the moment map for the SU(n + 1) action on \mathbb{CP}^n is

$$\mu(z) = rac{ZZ^*}{|Z|^2} - \mathit{Trace} \in \mathit{Lie}(\mathit{SU}(n+1))$$

Definition (Center of mass)

Let $V \subset \mathbb{CP}^n$ be a subvariety, then the center of mass of V is

$$\mu(V) = \int_V rac{ZZ^*}{|Z|^2} d\mu_{FS} - Trace$$

V is called *balanced* if $\mu(V) = 0$

Theorem (Chow-Stability)

V is Chow stable if and only if there is an $A \in SL(n+1; \mathbb{C})$ such that $A \cdot V$ is balanced.

Advantages of expressing Chow stability using balanced condition:

- computable
- easy to extend to pairs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem (Chow-Stability)

V is Chow stable if and only if there is an $A \in SL(n+1; \mathbb{C})$ such that $A \cdot V$ is balanced.

Advantages of expressing Chow stability using balanced condition:

- computable
- easy to extend to pairs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

From differential geometry to algebraic geometry

The Bergman embedding:

- \mathcal{H}_k the space of L_2 -integrable holomorphic sections of L^k , with L_2 -norm.
- $\{s_0, \cdots, s_N\}$ an orthonormal basis of \mathcal{H}_k
- the induced embedding $\Phi_k : X \to \mathbb{CP}^N$ by $\{s_0, \cdots, s_N\}$ is called the Bergman embedding.

<ロ> (四) (四) (三) (三) (三)

Definition

A polarised manifold (X, L) is called balanced if some embedding $\Phi : X \to \mathbb{CP}^n$ given by a basis of $H^0(X, L)$ is balanced. And in that case $\Phi^* \omega_{FS}$ is called the balanced metric.

Theorem (Donaldson)

Let L be an ample line bundle over a projective complex manifold X with Aut (X, L) discrete, then if $\omega \in 2\pi c_1(L)$ is a CSCK metric, then for k >> 1, (X, L^k) is balanced and the sequence of balanced metrics ω_k converges to ω

イロト 不得 とくほと くほとう

Definition

A polarised manifold (X, L) is called balanced if some embedding $\Phi : X \to \mathbb{CP}^n$ given by a basis of $H^0(X, L)$ is balanced. And in that case $\Phi^* \omega_{FS}$ is called the balanced metric.

Theorem (Donaldson)

Let L be an ample line bundle over a projective complex manifold X with Aut (X, L) discrete, then if $\omega \in 2\pi c_1(L)$ is a CSCK metric, then for k >> 1, (X, L^k) is balanced and the sequence of balanced metrics ω_k converges to ω

イロン 不良 とくほう 不良 とうほ

The other direction

• When $L = -K_X$ for a Fano manifold *X*, proved by Chen-Donaldson-Sun

The other direction for general L, besides the case of toric surface, is open.

イロト イポト イヨト イヨト

3

The other direction

• When $L = -K_X$ for a Fano manifold *X*, proved by Chen-Donaldson-Sun

The other direction for general L, besides the case of toric surface, is open.

イロト イポト イヨト イヨト

3

Donaldson's idea

Use Conical CSCK metric, (X, D, L, β) , where *D* is a divisor on *X*, to do continuity method.

- Analytic part: Conical CSCK metric
- Algebraic part:logarithmic K-Stabilities

ヘロト 人間 ト ヘヨト ヘヨト

æ

Donaldson's idea

Use Conical CSCK metric, (X, D, L, β) , where *D* is a divisor on *X*, to do continuity method.

- Analytic part:Conical CSCK metric
- Algebraic part:logarithmic K-Stabilities

ヘロト ヘアト ヘビト ヘビト

1

Donaldson's idea

Use Conical CSCK metric, (X, D, L, β) , where *D* is a divisor on *X*, to do continuity method.

- Analytic part:Conical CSCK metric
- Algebraic part:logarithmic K-Stabilities

ヘロト ヘアト ヘビト ヘビト

æ

Theorem (Odaka-Sun, Berman, Li-Sun)

When K_X is proportional to L, and $(K_X + D) \cdot L^{n-1} \ge 0$, then Then (X, D, L, 0) is logarithmic K-semistable.

Theorem (Li-Wang)

Given a log Riemann surface (X, D) with $d \ge \chi(X)$, then for any ample line bundle L over X, (X, D, L, 0) is logarithmic K-semistable.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Theorem (Odaka-Sun, Berman, Li-Sun)

When K_X is proportional to L, and $(K_X + D) \cdot L^{n-1} \ge 0$, then Then (X, D, L, 0) is logarithmic K-semistable.

Theorem (Li-Wang)

Given a log Riemann surface (X, D) with $d \ge \chi(X)$, then for any ample line bundle L over X, (X, D, L, 0) is logarithmic K-semistable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem (S-Sun, J.Geom. Anal. 2021)

Given a log Riemann surface (X, D) with $d > \chi(X)$, then for any ample line bundle L over X, (X, D, L) is $\frac{2}{3}$ -almost asymptotically Chow stable. More precisely, we have

$$\|\mu(\Phi_k(X), \Phi_k(D), \frac{2}{3})\|_2^2 = O(k^{-3/2}(\log k)^{121}).$$

where Φ_k is induced by an orthonormal basis of the Bergman space \mathcal{H}_k of holomorphic sections of L^k that L^2 integrable with respect to the complete metric on $X \setminus D$ with negative constant curvature.

So (X, D, L, 0) is logarithmic K-semistable.

イロト イポト イヨト イヨト

3

Generalization to higher dimension

The case of projectivized line bundle: (\hat{L}, D, A)

- D, a smooth projective manifold.
- *L*, an ample line bundle over *D*.
- \hat{L} , the projective completion of L
- A, a polarization of L
 that admits a circle-invariant complete negative CSCK metric on the complement L
 D, (constructed by Hwang-Singer using Calabi ansatz.)

▲ 同 ▶ ▲ 国 ▶ .

Generalization to higher dimension

The case of projectivized line bundle: (\hat{L}, D, A)

- D, a smooth projective manifold.
- *L*, an ample line bundle over *D*.
- \hat{L} , the projective completion of L
- A, a polarization of L̂ that admits a circle-invariant complete negative CSCK metric on the complement L̂\D, (constructed by Hwang-Singer using Calabi ansatz.)

Theorem (S, Math. Ann. 2019)

 $(\hat{L}, D, A, 0)$ is K-semistable.

Jingzhou Sun , Shantou University Log Riemann Surfaces

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

DEFINITION

For two compact metric spaces $(X, d_X), (Y, d_Y)$, the Gromov-Hausdorff distance of X and Y is defined as the infimum of the numbers ε such that there is a metric on $X \sqcup Y$ extending the metrics d_X and d_Y such that each of X and Y is ε -dense.

DEFINITION

Let (X, d_X, p) and (X_i, d_{X_i}, p_i) be pointed metric spaces. We say (X_i, p_i) converges to (X, p) in the pointed Gromov-Hausdorff sense if

$$d_{GH}((\bar{B}_r^{\chi_i}, p_i), (\bar{B}_r^{\chi}, p)) \rightarrow 0$$
 as $i \rightarrow \infty$

ヘロン 人間 とくほ とくほ とう

ъ

for all r > 0.

DEFINITION

For two compact metric spaces $(X, d_X), (Y, d_Y)$, the Gromov-Hausdorff distance of X and Y is defined as the infimum of the numbers ε such that there is a metric on $X \sqcup Y$ extending the metrics d_X and d_Y such that each of X and Y is ε -dense.

DEFINITION

Let (X, d_X, p) and (X_i, d_{X_i}, p_i) be pointed metric spaces. We say (X_i, p_i) converges to (X, p) in the pointed Gromov-Hausdorff sense if

$$d_{GH}((\bar{B}_r^{X_i}, p_i), (\bar{B}_r^X, p)) \to 0$$
 as $i \to \infty$

ヘロン 人間 とくほ とくほ とう

3

for all r > 0.

 $\mathcal{K}(n, c, V)$ consists of (X, g, J, L, A) satisfying the following conditions

- (*X*, *g*) a compact Riemannian manifold of real dimension 2*n*, and volume of *X* being *V*
- *J* a complex structure with respect to which the metric is Kähler
- *L* a Hermitian line bundle over *X*, *A* is a connection on *L* with curvature $-i\omega$ where ω is the Kähler form. Satisfying $-\frac{1}{2}g \leq \text{Ric} \leq g$
- the "non-collapsing " condition:

$$\mathsf{Vol}B_r \geq c rac{\pi^n}{n!} r^{2n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 B_r is any *r*-ball in *X*.

Theorem (Donaldson-Sun)

Given n, c, V, there is a fixed k_1 and an integer N with the following effect:

- Any X in K(n, c, V) can be embedded in a linear subspace of CP^N by sections of L^k₁.
- Let X_j be a sequence in K(n, c, V) with Gromov-Hausdorff limit X_∞. Then X_∞ is homeomorphic to a normal projective variety W ⊂ CP^N. After passing to a subsequence and taking a suitable sequence of projective transformations, we can suppose that the projective varieties X_j ⊂ CP^N converge as algebraic varieties to W.

・ロト ・四ト ・ヨト・

a "collapsing" case

- (C_j, g_j) a sequence of compact genus g ≥ 2 Riemann surfaces, with Riemannian metric g_j of constant Gaussian curvature −1;
- (C₀, g₀) a Punctured Riemann surface(not necessarily connected), g₀ a complete Riemannian metric of constant Gaussian curvature -1;
- (*C_j*, *g_j*) converges, in the topology of pointed Gromov-Hausdorff, to (*C*₀, *g*₀);
- As the Gaussian curvature is -1, the degeneration of metrics can only be "pinching a nontrivial loop", namely a sequence of surfaces with growingly thinner and longer handles, with the central loops degenerating to points.

くロト (過) (目) (日)

Figure: hyperbolic metric

▶ ▲ 臣 ▶ 臣 • 夕々 (や

- $\mathcal{H}_{j,k}$, space of L^2 -integrable holomorphic sections of $K_{C_i}^k$
- For *k* large enough, a basis of $\mathcal{H}_{j,k}$ will induce a Kodaira embedding of C_j to \mathbb{CP}^{N_k} , where $N_k = \dim \mathcal{H}_{j,k} 1$ is independent of $j \ge 1$
- For j = 0, the dimension of $\mathcal{H}_{j,k}$ is smaller than that of j > 0.
- So C_0 has *d* pairs of punctures, which will be called ends. And for *k* large enough,the dimension of $\mathcal{H}_{0,k}$ equals $N_k + 1 - d$.

ヘロト 人間 とくほとく ほとう

Theorem (S, preprint)

For k large enough, we can choose an orthonormal basis for $\mathcal{H}_{j,k}$ for all j > 0, so that as $j \to \infty$ the image of the embedding

$$\Phi_{j,k}: \mathit{C}_{j}
ightarrow \mathbb{CP}^{\mathit{N}_{k}}$$

induced by the orthonormal basis converges to the image of C_0 under the embedding

$$\Phi_{0,k}: C_0 \to \mathbb{CP}^{N_k-d} \subset \mathbb{CP}^{N_k},$$

attached with d pairs of linear \mathbb{CP}^1 's. To each pair of the ends $(p_{\alpha}, p_{\alpha+d})$, a pair of linear \mathbb{CP}^1 's are associated, and form a connected chain connecting the images of these two points.

イロト イポト イヨト イヨト 三日

Remark

- It is interesting to mention that during the process of taking limit, the pair of linear CP¹'s are developed as a pair of bubbles.
- This is illustrated by the following picture.

イロト イポト イヨト イヨト

3

Thank you!

Jingzhou Sun , Shantou University Log Riemann Surfaces

イロン 不同 とくほう イヨン

æ

- *M_g* the moduli of smooth compact Riemann surfaces of genus *g* ≥ 2.
- $\overline{\mathcal{M}_g}$ the Deligne-Mumford compactification of \mathcal{M}_g consisting of stable curves.
- a stable curve is a compact connected Riemann surface whose only singularities are ordinary double points and whose automorphism group is finite.

ヘロン 人間 とくほ とくほ とう

1

In differential geometry

- Each smooth curve of genus g carries an unique Poincaré metric with constant Gaussian curvature -1.
- If C is a singular stable curve, then by removing the nodes, the smooth part carries an uniqu complete hyperbolic metric with constant Gaussian curvature -1.
- If a holomorphic family π : C → D of compact smooth curves C_t degenerate to C₀, then with the hyperbolic metric, C_t converge to C₀ in the pointed Gromov-Hausdorff topology.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ