Geometric quantization on complex manifolds with boundary

Guokuan Shao

School of Mathematics (Zhuhai), Sun Yat-sen University

2022 Annual Meeting on Several Complex Variables, Shanghai

August 2022

Guokuan Shao Geometric quantization on complex manifolds with boundary

イロト イポト イヨト イヨト

Plan of the talk:

- Quantization commutes with reduction (Guillemin-Sternberg)
- Geometric quantization on CR manifolds (Hsiao-Ma-Marinescu)
- Geometric quantization on complex manifolds with boundary (Hsiao-Huang-Li-S.)

イロト イポト イヨト イヨト

1. Quantization commutes with reduction (Guillemin-Sternberg)

イロト イポト イヨト イヨト

э

Geometric quantization

• A compact symplectic manifold (M, ω) plays the role of the phase space of a classical mechanical system.

A D > A B > A B > A B >

Geometric quantization

- A compact symplectic manifold (M, ω) plays the role of the phase space of a classical mechanical system.
- In 1960's, Kostant and Souriau introduced geometric quantization which gives a geometric method to properly quantize classical mechanical systems.

イロト イボト イヨト イヨト

Geometric quantization

- A compact symplectic manifold (M, ω) plays the role of the phase space of a classical mechanical system.
- In 1960's, Kostant and Souriau introduced geometric quantization which gives a geometric method to properly quantize classical mechanical systems.
- To quantize a compact symplectic manifold, i.e., to associate a Hilbert space \mathcal{H} , we need a (prequantum) line bundle whose first Chern form equals to the symplectic form.

イロト イヨト イヨト

Geometric quantization

- A compact symplectic manifold (M, ω) plays the role of the phase space of a classical mechanical system.
- In 1960's, Kostant and Souriau introduced geometric quantization which gives a geometric method to properly quantize classical mechanical systems.
- To quantize a compact symplectic manifold, i.e., to associate a Hilbert space \mathcal{H} , we need a (prequantum) line bundle whose first Chern form equals to the symplectic form.
- (L, h^L, ∇^L) a complex line bundle over M equipped with a Hermitian metric h^L and a Hermitian connection ∇^L such that

$$\frac{\sqrt{-1}}{2\pi}R^{L} = \omega, \qquad \text{where} \quad R^{L} := \nabla^{L} \circ \nabla^{L}.$$

L is called the prequantum line bundle on (M, ω) .

Kähler quantization

• If we take $\mathcal{H} = L^2(M, L)$, the L^2 -completion of the square integrable sections of L with respect to h^L , then \mathcal{H} is too large to handle.

- If we take $\mathcal{H} = L^2(M, L)$, the L^2 -completion of the square integrable sections of L with respect to h^L , then \mathcal{H} is too large to handle.
- One way is to introduce the "Kähler polarization" to cut down the dimensions of \mathcal{H} .

イロト イヨト イヨト

- If we take $\mathcal{H} = L^2(M, L)$, the L^2 -completion of the square integrable sections of L with respect to h^L , then \mathcal{H} is too large to handle.
- One way is to introduce the "Kähler polarization" to cut down the dimensions of \mathcal{H} .
- Let (M, ω, J) be Kähler, J the complex structure map of M, ω and J are compatible,
 - i.e. $\omega(\cdot, J \cdot)$ is positive definite and L is holomorphic.

- If we take $\mathcal{H} = L^2(M, L)$, the L^2 -completion of the square integrable sections of L with respect to h^L , then \mathcal{H} is too large to handle.
- One way is to introduce the "Kähler polarization" to cut down the dimensions of \mathcal{H} .
- Let (M, ω, J) be Kähler, J the complex structure map of M, ω and J are compatible,
 - i.e. $\omega(\cdot, J \cdot)$ is positive definite and L is holomorphic.
- The quantization of (M, ω, J) is defined as

$$H^{0}(M,L) := \left\{ u \in C^{\infty}(M,L); \overline{\partial} u = 0 \right\},$$

the space of holomorphic sections of the prequantum line bundle L.

イロト イポト イヨト イヨト

Kähler quantization

• We can construct a correspondence between smooth objects on M (classical observables) and operators on $H^0(M, L)$ (quantum observables) by letting Planck's constant tend to zero.

イロト イヨト イヨト

- We can construct a correspondence between smooth objects on M (classical observables) and operators on $H^0(M, L)$ (quantum observables) by letting Planck's constant tend to zero.
- Changing Planck's constant is equivalent to rescaling the Kähler form which is achieved by taking high tensor powers L^m .

イロト イボト イヨト イヨト

- We can construct a correspondence between smooth objects on M (classical observables) and operators on $H^0(M, L)$ (quantum observables) by letting Planck's constant tend to zero.
- Changing Planck's constant is equivalent to rescaling the Kähler form which is achieved by taking high tensor powers L^m .
- The orthogonal projection on $H^0(M, L^m)$ palys a crucial role in the correspondence.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Quantization of G-Kähler manifolds

• One may further consider a compact Kähler manifold with prequantum data and a nice *G*-action, where *G* is a compact Lie group with Lie algebra g.

Quantization of G-Kähler manifolds

- One may further consider a compact Kähler manifold with prequantum data and a nice *G*-action, where *G* is a compact Lie group with Lie algebra g.
- Assume that G acts on M, and that the action lifts on L and commutes with J, h^L , ∇^L .

イロト イボト イヨト イヨト

Quantization of G-Kähler manifolds

- One may further consider a compact Kähler manifold with prequantum data and a nice *G*-action, where *G* is a compact Lie group with Lie algebra g.
- Assume that G acts on M, and that the action lifts on L and commutes with J, h^L , ∇^L .

• Then
$$\omega := \frac{\sqrt{-1}}{2\pi} R^L$$
 is a *G*-invariant form.

イロト イボト イヨト イヨト

Quantization of G-Kähler manifolds

- One may further consider a compact Kähler manifold with prequantum data and a nice *G*-action, where *G* is a compact Lie group with Lie algebra g.
- Assume that G acts on M, and that the action lifts on L and commutes with J, h^L , ∇^L .
- Then $\omega := \frac{\sqrt{-1}}{2\pi} R^L$ is a *G*-invariant form.
- For $\xi \in \mathfrak{g}$, let ξ_M be the vector field on M generated by ξ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Quantization of G-Kähler manifolds

- One may further consider a compact Kähler manifold with prequantum data and a nice *G*-action, where *G* is a compact Lie group with Lie algebra g.
- Assume that G acts on M, and that the action lifts on L and commutes with J, h^L , ∇^L .
- Then $\omega := \frac{\sqrt{-1}}{2\pi} R^L$ is a *G*-invariant form.
- For $\xi \in \mathfrak{g}$, let ξ_M be the vector field on M generated by ξ .
- $\mu: M \to \mathfrak{g}^*$ the moment map induced by ω is defined by

$$\iota_{\xi_M}\omega=d\langle\mu,\xi
angle$$
 for all $\xi\in\mathfrak{g}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Quantization commutes with reduction

• Assume that $0 \in \mathfrak{g}^*$ is regular and G acts on $\mu^{-1}(0)$ freely.

Quantization commutes with reduction

- Assume that $0 \in \mathfrak{g}^*$ is regular and G acts on $\mu^{-1}(0)$ freely.
- The symplectic reduction of M by G is defined to be

$$M_G := \mu^{-1}(0)/G$$

• One can construct pre-quantum data (L_G, ∇_G, h_G^L) on M_G

Quantization commutes with reduction

- Assume that $0 \in \mathfrak{g}^*$ is regular and G acts on $\mu^{-1}(0)$ freely.
- The symplectic reduction of M by G is defined to be

$$M_G := \mu^{-1}(0)/G$$

- One can construct pre-quantum data (L_G, ∇_G, h_G^L) on M_G
- When M is Kähler, J on M induces a complex structure J_G on the Kähler manifold (M_G, ω_G, J_G) for which the line bundle L_G := L/G is a holomorphic line bundle over M_G.

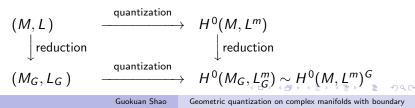
イロト イポト イヨト イヨト 三日

Quantization commutes with reduction

- Assume that $0 \in \mathfrak{g}^*$ is regular and G acts on $\mu^{-1}(0)$ freely.
- The symplectic reduction of M by G is defined to be

$$M_G := \mu^{-1}(0)/G$$

- One can construct pre-quantum data (L_G, ∇_G, h_G^L) on M_G
- When M is Kähler, J on M induces a complex structure J_G on the Kähler manifold (M_G, ω_G, J_G) for which the line bundle L_G := L/G is a holomorphic line bundle over M_G.
- Guillemin-Sternberg conjecture:



Quantization commutes with reduction

Theorem ([Q, R]=0, Guillemin-Sternberg (1982))

$$\dim H^0(M, L^m)^G = \dim H^0(M_G, L_G^m).$$

Quantization commutes with reduction

Theorem ([Q, R]=0, Guillemin-Sternberg (1982))

dim $H^0(M, L^m)^G$ = dim $H^0(M_G, L_G^m)$.

• Guillemin-Sternberg proved the case that *M* is Kähler and raised the problem in a more general setting.

イロト イポト イヨト イヨト

Quantization commutes with reduction

Theorem ([Q, R]=0, Guillemin-Sternberg (1982))

dim $H^0(M, L^m)^G$ = dim $H^0(M_G, L_G^m)$.

- Guillemin-Sternberg proved the case that *M* is Kähler and raised the problem in a more general setting.
- For G abelian, Meinrenken (1996) and Vergne (1996).

Quantization commutes with reduction

Theorem ([Q, R]=0, Guillemin-Sternberg (1982))

dim $H^0(M, L^m)^G$ = dim $H^0(M_G, L_G^m)$.

- Guillemin-Sternberg proved the case that *M* is Kähler and raised the problem in a more general setting.
- For G abelian, Meinrenken (1996) and Vergne (1996).
- For general *G*, Meinrenken, Meinrenken-Sjamaar (1998), symplectic cut techniques of Lerman.

Quantization commutes with reduction

• Pure analytic approach by Tian-Zhang (1998), analytic localization techniques by Bismut-Lebeau.

イロト イボト イヨト イヨト

Quantization commutes with reduction

- Pure analytic approach by Tian-Zhang (1998), analytic localization techniques by Bismut-Lebeau.
- Non-compact symplectic manifold case (Vergne's conjecture) by Ma-Zhang (2014).

イロト イヨト イヨト

Quantization commutes with reduction

- Pure analytic approach by Tian-Zhang (1998), analytic localization techniques by Bismut-Lebeau.
- Non-compact symplectic manifold case (Vergne's conjecture) by Ma-Zhang (2014).
- For *R^L* non-degenerate and *m* large (more on CR manifold), Hsiao-Huang (2021).

イロト イボト イヨト イヨト

CR viewpoint

• Let X be the circle bundle of (L^*, h^{L^*}) , i.e.

$$X := \left\{ v \in L^*; |v|_{h^{L^*}}^2 = 1 \right\}.$$

イロト イヨト イヨト

CR viewpoint

• Let X be the circle bundle of (L^*, h^{L^*}) , i.e.

$$X := \left\{ v \in L^*; |v|_{h^{L^*}}^2 = 1 \right\}.$$

• X is a compact strongly pseudoconvex CR manifold with a group action G.

A D > A B > A B > A B >

CR viewpoint

• Let X be the circle bundle of (L^*, h^{L^*}) , i.e.

$$X := \left\{ v \in L^*; |v|_{h^{L^*}}^2 = 1 \right\}.$$

- X is a compact strongly pseudoconvex CR manifold with a group action G.
- X admits a S¹ action e^{iθ}: e^{iθ} ∘ (z, λ) := (z, e^{iθ}λ), where λ denotes the fiber coordinate of X.

イロト イポト イヨト イヨト

CR viewpoint

• Let X be the circle bundle of (L^*, h^{L^*}) , i.e.

$$X := \left\{ v \in L^*; |v|_{h^{L^*}}^2 = 1 \right\}.$$

- X is a compact strongly pseudoconvex CR manifold with a group action G.
- X admits a S¹ action e^{iθ}: e^{iθ} ∘ (z, λ) := (z, e^{iθ}λ), where λ denotes the fiber coordinate of X.
- $H_b^0(X)^G$: the space of the *G*-invariant L^2 CR functions.

イロト イヨト イヨト

CR viewpoint

• For every $m \in \mathbb{Z}$, let

$$H^0_{b,m}(X)^G := \left\{ u \in H^0_b(X)^G; \ (e^{i\theta})^* u = e^{im\theta} u, \text{for every } e^{i\theta} \in S^1 \right\}$$
$$H^0_{b,m}(X_G) := \left\{ u \in H^0_b(X_G); \ (e^{i\theta})^* u = e^{im\theta} u, \text{for every } e^{i\theta} \in S^1 \right\}.$$

•
$$H_b^0(X)^G := \bigoplus_{m \in \mathbb{Z}} H_{b,m}^0(X)^G$$
, $H_b^0(X_G) := \bigoplus_{m \in \mathbb{Z}} H_{b,m}^0(X_G)$.

<ロ> (日) (日) (日) (日) (日)

CR viewpoint

• For every $m \in \mathbb{Z}$, let

$$H^0_{b,m}(X)^G := \left\{ u \in H^0_b(X)^G; \ (e^{i\theta})^* u = e^{im\theta} u, \text{for every } e^{i\theta} \in S^1 \right\}$$
$$H^0_{b,m}(X_G) := \left\{ u \in H^0_b(X_G); \ (e^{i\theta})^* u = e^{im\theta} u, \text{for every } e^{i\theta} \in S^1 \right\}.$$

•
$$H^0_b(X)^G := \bigoplus_{m \in \mathbb{Z}} H^0_{b,m}(X)^G$$
, $H^0_b(X_G) := \bigoplus_{m \in \mathbb{Z}} H^0_{b,m}(X_G)$.

• Grauert: For every $m \in \mathbb{Z}$,

$$H^{0}(M, L^{m})^{G} \cong H^{0}_{b,m}(X)^{G}, \quad H^{0}(M_{G}, L^{m}_{G}) \cong H^{0}_{b,m}(X_{G}).$$

<ロ> (日) (日) (日) (日) (日)

CR viewpoint

• For every $m \in \mathbb{Z}$, let

$$H^0_{b,m}(X)^G := \left\{ u \in H^0_b(X)^G; \ (e^{i\theta})^* u = e^{im\theta} u, \text{for every } e^{i\theta} \in S^1 \right\}$$
$$H^0_{b,m}(X_G) := \left\{ u \in H^0_b(X_G); \ (e^{i\theta})^* u = e^{im\theta} u, \text{for every } e^{i\theta} \in S^1 \right\}.$$

•
$$H^0_b(X)^G := \bigoplus_{m \in \mathbb{Z}} H^0_{b,m}(X)^G$$
, $H^0_b(X_G) := \bigoplus_{m \in \mathbb{Z}} H^0_{b,m}(X_G)$.

• Grauert: For every $m \in \mathbb{Z}$,

$$H^{0}(M, L^{m})^{G} \cong H^{0}_{b,m}(X)^{G}, \quad H^{0}(M_{G}, L^{m}_{G}) \cong H^{0}_{b,m}(X_{G}).$$

• From Guillemin-Sternberg theorem,

$$\begin{aligned} H^0_{b,m}(X)^G &\cong H^0_{b,m}(X_G), \quad \text{ for every } m \in \mathbb{Z}. \\ H^0_b(X)^G &\cong H^0_b(X_G). \end{aligned}$$

Geometric quantization on complex manifolds with boundary

・ 同 ト ・ ヨ ト ・ ヨ ト

• Can we generalize Guillemin-Sternberg theorem to general compact CR manifolds?

This generalization is improtant in CR, contact and Sasakian geometry.

イロト イポト イヨト イヨト

• Can we generalize Guillemin-Sternberg theorem to general compact CR manifolds?

This generalization is improtant in CR, contact and Sasakian geometry.

• $\mu^{-1}(0)$ should determine $H^0(M, L)^G$.

Does Guillemin-Sternberg theorem holds when L is just positive near $\mu^{-1}(0)$?

• Can we generalize Guillemin-Sternberg theorem to general compact CR manifolds?

This generalization is improtant in CR, contact and Sasakian geometry.

• $\mu^{-1}(0)$ should determine $H^0(M, L)^G$.

Does Guillemin-Sternberg theorem holds when L is just positive near $\mu^{-1}(0)$?

• But the quantum spaces consisting of CR functions and are infinite dimensional.

イロト イヨト イヨト

• Can we generalize Guillemin-Sternberg theorem to general compact CR manifolds?

This generalization is improtant in CR, contact and Sasakian geometry.

• $\mu^{-1}(0)$ should determine $H^0(M, L)^G$.

Does Guillemin-Sternberg theorem holds when L is just positive near $\mu^{-1}(0)$?

- But the quantum spaces consisting of CR functions and are infinite dimensional.
- Hsiao, Ma and Marinescu (2019) use Szegő kernel method and *G*-invariant microlocal Fourier integral operator calculation to tackle the problem.

イロト イヨト イヨト

2. Geometric quantization on CR manifolds (Hsiao-Ma-Marinescu)

ヘロト ヘ団ト ヘヨト ヘヨト

э

• X: a smooth orientable manifold of dimension 2n + 1, $n \ge 1$.

 $T^{1,0}X$: a subbundle of the complexified tangent bundle $\mathbb{C}TX$.

イロト 不得 トイヨト イヨト 三日

• X: a smooth orientable manifold of dimension 2n + 1, $n \ge 1$.

 $T^{1,0}X$: a subbundle of the complexified tangent bundle $\mathbb{C}TX$.

Definition

We say that $T^{1,0}X$ is a CR structure of X if

(i)
$$\dim_{\mathbb{C}} T_x^{1,0} X = n$$
, for every $x \in X$.

(ii)
$$T^{1,0}X \cap T^{0,1}X = \{0\}$$
, where $T^{0,1}X := \overline{T^{1,0}X}$.

(iii) $[\mathcal{V},\mathcal{V}] \subset \mathcal{V}, \ \mathcal{V} = \mathcal{C}^{\infty}(X, T^{1,0}X).$

イロト イヨト イヨト

• X: a smooth orientable manifold of dimension 2n + 1, $n \ge 1$.

 $T^{1,0}X$: a subbundle of the complexified tangent bundle $\mathbb{C}TX$.

Definition

We say that $T^{1,0}X$ is a CR structure of X if

(i) dim
$$_{\mathbb{C}}T_{x}^{1,0}X = n$$
, for every $x \in X$.

(ii)
$$T^{1,0}X \cap T^{0,1}X = \{0\}$$
, where $T^{0,1}X := \overline{T^{1,0}X}$.

(iii) $[\mathcal{V},\mathcal{V}] \subset \mathcal{V}, \ \mathcal{V} = \mathcal{C}^{\infty}(X, T^{1,0}X).$

If we can find a CR structure $T^{1,0}X$ on X, we call the pair $(X, T^{1,0}X)$ a CR manifold.

イロト イポト イヨト イヨト

CR manifolds

• Take a Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}TX$ such that we have the orthogonal decomposition:

イロト イヨト イヨト ・ ヨト

• Take a Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}TX$ such that we have the orthogonal decomposition:

•
$$\mathbb{C}TX = T^{1,0}X \oplus T^{0,1}X \oplus \mathbb{C}T$$
, $T \in \mathcal{C}^{\infty}(X, TX)$, $||T|| = 1$,

where T: Reeb vector field.

イロト イポト イヨト イヨト

• Take a Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}TX$ such that we have the orthogonal decomposition:

•
$$\mathbb{C}TX = T^{1,0}X \oplus T^{0,1}X \oplus \mathbb{C}T$$
, $T \in \mathcal{C}^{\infty}(X, TX)$, $||T|| = 1$,

where T: Reeb vector field.

•
$$\mathbb{C}T^*X = T^{*1,0}X \oplus T^{*0,1}X \oplus \mathbb{C}\omega_0$$
, $\omega_0 \in \mathcal{C}^\infty(X, T^*X)$,

where $T^{*0,1}X$: bundle of (0,1) forms and ω_0 : Reeb one form.

$$\langle \omega_0, T \rangle = -1, \qquad T^{*0,1}X = (T^{1,0}X \oplus \mathbb{C}T)^{\perp}.$$

イロト イポト イヨト イヨト

Levi form

Definition

For $p \in X$, the Levi form \mathcal{L}_p is the Hermitian quadratic form on $\mathcal{T}_p^{1,0}X$ given by

$$\mathcal{L}_p(U,V) = -rac{1}{2i} d\omega_0(p)(U,\overline{V}), \quad U,V \in T_p^{1,0}X.$$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Levi form

Definition

For $p \in X$, the Levi form \mathcal{L}_p is the Hermitian quadratic form on $\mathcal{T}_p^{1,0}X$ given by

$$\mathcal{L}_p(U,V) = -rac{1}{2i} d\omega_0(p)(U,\overline{V}), \quad U,V \in T_p^{1,0}X.$$

 We say that X is strongly psudoconvex at p ∈ X if the Levi form is positive definite at p ∈ X.

イロト イヨト イヨト ・ ヨト

Levi form

Definition

For $p \in X$, the Levi form \mathcal{L}_p is the Hermitian quadratic form on $\mathcal{T}_p^{1,0}X$ given by

$$\mathcal{L}_p(U,V) = -rac{1}{2i}d\omega_0(p)(U,\overline{V}), \quad U,V \in T_p^{1,0}X.$$

- We say that X is strongly psudoconvex at p ∈ X if the Levi form is positive definite at p ∈ X.
- We say that X is strongly psudoconvex if the Levi form is positive definite at each point of X.

イロト 不得 トイヨト イヨト

CR functions

• Let $\tau : \mathbb{C}T^*X \to T^{*0,1}X$ be the orthogonal projection.

イロト イポト イヨト イヨト

- Let $\tau : \mathbb{C}T^*X \to T^{*0,1}X$ be the orthogonal projection.
- Tangential Cauchy-Riemann(CR) operator,

$$\overline{\partial}_b = \tau \circ d : \mathcal{C}^\infty(X) \to \Omega^{0,1}(X)$$

where $\Omega^{0,1}(X) = \mathcal{C}^{\infty}(X, T^{*0,1}X).$

イロト イヨト イヨト

- Let $\tau : \mathbb{C}T^*X \to T^{*0,1}X$ be the orthogonal projection.
- Tangential Cauchy-Riemann(CR) operator,

$$\overline{\partial}_b = \tau \circ d : \mathcal{C}^\infty(X) \to \Omega^{0,1}(X)$$

where $\Omega^{0,1}(X) = \mathcal{C}^{\infty}(X, T^{*0,1}X).$

• We extend $\overline{\partial}_b$ to L^2 space:

$$\overline{\partial}_b : \operatorname{Dom} \overline{\partial}_b \subset L^2(X) \to L^2_{(0,1)}(X),$$

where $\operatorname{Dom} \overline{\partial}_b = \{ u \in L^2(X); \ \overline{\partial}_b u \in L^2(X) \}.$

イロト 不得 トイヨト イヨト

- Let $\tau : \mathbb{C}T^*X \to T^{*0,1}X$ be the orthogonal projection.
- Tangential Cauchy-Riemann(CR) operator,

$$\overline{\partial}_b = \tau \circ d : \mathcal{C}^\infty(X) \to \Omega^{0,1}(X)$$

where $\Omega^{0,1}(X) = \mathcal{C}^{\infty}(X, T^{*0,1}X).$

• We extend $\overline{\partial}_b$ to L^2 space:

$$\overline{\partial}_b : \text{Dom}\,\overline{\partial}_b \subset L^2(X) \to L^2_{(0,1)}(X),$$

where $\text{Dom}\,\overline{\partial}_b = \big\{ u \in L^2(X); \ \overline{\partial}_b u \in L^2(X) \big\}.$

• For $u \in L^2(X)$, we say that u is a CR function if $u \in \operatorname{Ker} \overline{\partial}_b$.

イロト イボト イヨト イヨト

wh

- Let $\tau : \mathbb{C}T^*X \to T^{*0,1}X$ be the orthogonal projection.
- Tangential Cauchy-Riemann(CR) operator,

$$\overline{\partial}_b = \tau \circ d : \mathcal{C}^\infty(X) \to \Omega^{0,1}(X)$$

where $\Omega^{0,1}(X) = \mathcal{C}^\infty(X, T^{*0,1}X).$

• We extend $\overline{\partial}_b$ to L^2 space:

$$\overline{\partial}_b : \operatorname{Dom} \overline{\partial}_b \subset L^2(X) \to L^2_{(0,1)}(X),$$

ere $\operatorname{Dom} \overline{\partial}_b = \big\{ u \in L^2(X); \ \overline{\partial}_b u \in L^2(X) \big\}.$

- For $u \in L^2(X)$, we say that u is a CR function if $u \in \operatorname{Ker} \overline{\partial}_b$.
- If X is strongly pseudoconvex at some point of X and ∂_b has L² closed range, then dim Ker ∂_b = +∞ (Boutet de Monvel-Sjöstrand, Hsiao-Marinescu).

CR manifolds with Lie group action

 Let (X, T^{1,0}X) be a compact connected CR manifold of dimension 2n + 1, n ≥ 2.

・ロト ・ 同ト ・ ヨト ・ ヨト

CR manifolds with Lie group action

- Let (X, T^{1,0}X) be a compact connected CR manifold of dimension 2n + 1, n ≥ 2.
- Now, we assume that
 - X admits a *d*-dimensional compact Lie group G action with Lie algebra \mathfrak{g} .

イロト 不得 トイヨト イヨト 二日

CR manifolds with Lie group action

- Let (X, T^{1,0}X) be a compact connected CR manifold of dimension 2n + 1, n ≥ 2.
- Now, we assume that
 - X admits a *d*-dimensional compact Lie group G action with Lie algebra g.
 - The Lie group action G preserves ω_0 and CR structure. i.e.,

$$g^*\omega_0=\omega_0$$
 and $dg(T^{1,0}X)=T^{1,0}X, \quad \forall g\in G.$

イロト イポト イヨト イヨト 三日

CR manifolds with Lie group action

- Let (X, T^{1,0}X) be a compact connected CR manifold of dimension 2n + 1, n ≥ 2.
- Now, we assume that
 - X admits a *d*-dimensional compact Lie group G action with Lie algebra g.
 - The Lie group action G preserves ω_0 and CR structure. i.e.,

$$g^*\omega_0=\omega_0 \quad ext{and} \quad dg(\mathcal{T}^{1,0}X)=\mathcal{T}^{1,0}X, \quad \forall g\in G.$$

• Goal: Study $H_b^0(X)^G$: the space of global *G*-invariant L^2 CR functions.

・ロット (四)・ (日)・ (日)・

CR momentum map

Definition

The momentum map associated to the form ω_0 is the map $\mu: X \to \mathfrak{g}^*$ such that, for all $x \in X$ and $\xi \in \mathfrak{g}$, we have

$$\langle \mu(x), \xi \rangle = \omega_0(\xi_X(x)),$$

 $\xi \in \mathfrak{g}, \xi_X$: the vector field on X induced by ξ .

CR momentum map

Definition

The momentum map associated to the form ω_0 is the map $\mu: X \to \mathfrak{g}^*$ such that, for all $x \in X$ and $\xi \in \mathfrak{g}$, we have

$$\langle \mu(x), \xi \rangle = \omega_0(\xi_X(x)),$$

 $\xi \in \mathfrak{g}, \, \xi_X :$ the vector field on X induced by ξ .

Assumption

0 is a regular value of μ , G acts on $\mu^{-1}(0)$ freely and the Levi form of X is positive definite near $\mu^{-1}(0)$.

イロト イボト イヨト イヨト

CR momentum map

Definition

The momentum map associated to the form ω_0 is the map $\mu: X \to \mathfrak{g}^*$ such that, for all $x \in X$ and $\xi \in \mathfrak{g}$, we have

$$\langle \mu(x), \xi \rangle = \omega_0(\xi_X(x)),$$

 $\xi \in \mathfrak{g}, \, \xi_X :$ the vector field on X induced by ξ .

Assumption

0 is a regular value of μ , G acts on $\mu^{-1}(0)$ freely and the Levi form of X is positive definite near $\mu^{-1}(0)$.

• X is not necessarily strongly pseudoconvex.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

• Let
$$X = \{(z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 + |z_2|^2 + |z_3|^2 = 1\}.$$

Then X is a weakly pseudocovex CR manifold.

A D > A B > A B > A B >

э

Example

• Let
$$X = \{(z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 + |z_2|^2 + |z_3|^2 = 1\}.$$

Then X is a weakly pseudocovex CR manifold.

• X admits a S^1 -action: $e^{i\theta} \circ (z_1, z_2, z_3) = (e^{-i\theta}z_1, e^{i\theta}z_2, e^{i\theta}z_3).$

0 is a regular value of μ .

イロト 不得 トイヨト イヨト

Example

• Let
$$X = \{(z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 + |z_2|^2 + |z_3|^2 = 1\}.$$

Then X is a weakly pseudocovex CR manifold.

• X admits a
$$S^1$$
-action:
 $e^{i\theta} \circ (z_1, z_2, z_3) = (e^{-i\theta}z_1, e^{i\theta}z_2, e^{i\theta}z_3).$

0 is a regular value of μ .

•
$$\mu^{-1}(0) = \{(z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 = \frac{1}{3}, |z_2|^2 + |z_3|^2 = \frac{2}{3}\}.$$

Then X is strongly pseudoconvex near $\mu^{-1}(0)$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

CR reduction

• The space $X_G := \mu^{-1}(0)/G$ is called the CR reduction.

イロト イポト イヨト イヨト

э

CR reduction

• The space $X_G := \mu^{-1}(0)/G$ is called the CR reduction.

Theorem (Hsiao-Huang, Hsiao-Ma-Marinescu)

 X_G is a strongly pseudoconvex CR manifold of dimension 2n - 2d + 1 with natural CR structure $T^{1,0}X_G$ induced from $T^{1,0}X$.

イロト イポト イヨト イヨト

CR reduction

• The space $X_G := \mu^{-1}(0)/G$ is called the CR reduction.

Theorem (Hsiao-Huang, Hsiao-Ma-Marinescu)

 X_G is a strongly pseudoconvex CR manifold of dimension 2n - 2d + 1 with natural CR structure $T^{1,0}X_G$ induced from $T^{1,0}X$.

• Question: Is $H_b^0(X)^G \cong H_b^0(X_G)$?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Canonical map σ_G

• $\iota: \mu^{-1}(0) \to X$: the natural inclusion.

 $\iota^* : \mathcal{C}^{\infty}(X) \to \mathcal{C}^{\infty}(\mu^{-1}(0))$: the pull-back by ι .

 $\iota_{\mathcal{G}}: \mathcal{C}^{\infty}(\mu^{-1}(0))^{\mathcal{G}} \to \mathcal{C}^{\infty}(X_{\mathcal{G}})$: the natural identification.

$$\sigma_{\mathsf{G}} := \iota_{\mathsf{G}} \circ \iota^* : H^0_b(X)^{\mathsf{G}} \cap \mathcal{C}^\infty(X)^{\mathsf{G}} \to H^0_b(X_{\mathsf{G}}) \cap \mathcal{C}^\infty(X_{\mathsf{G}}).$$

Canonical map σ_G

• $\iota: \mu^{-1}(0) \to X$: the natural inclusion.

 $\iota^*: \mathcal{C}^{\infty}(X) \to \mathcal{C}^{\infty}(\mu^{-1}(0))$: the pull-back by ι .

 $\iota_{\mathcal{G}}: \mathcal{C}^{\infty}(\mu^{-1}(0))^{\mathcal{G}} \to \mathcal{C}^{\infty}(X_{\mathcal{G}})$: the natural identification.

$$\sigma_{\mathcal{G}} := \iota_{\mathcal{G}} \circ \iota^* : H^0_b(X)^{\mathcal{G}} \cap \mathcal{C}^\infty(X)^{\mathcal{G}} \to H^0_b(X_{\mathcal{G}}) \cap \mathcal{C}^\infty(X_{\mathcal{G}}).$$

• The map σ_G does not extend to a bounded operator on L^2 .

イロト 不得 とくほ とくほ とうほう

Canonical map σ_G

- $\iota: \mu^{-1}(0) \to X$: the natural inclusion.
 - $\iota^*: \mathcal{C}^{\infty}(X) \to \mathcal{C}^{\infty}(\mu^{-1}(0))$: the pull-back by ι .

 $\iota_{\mathcal{G}}: \mathcal{C}^{\infty}(\mu^{-1}(0))^{\mathcal{G}} \to \mathcal{C}^{\infty}(X_{\mathcal{G}})$: the natural identification.

$$\sigma_{\mathcal{G}} := \iota_{\mathcal{G}} \circ \iota^* : H^0_b(X)^{\mathcal{G}} \cap \mathcal{C}^\infty(X)^{\mathcal{G}} \to H^0_b(X_{\mathcal{G}}) \cap \mathcal{C}^\infty(X_{\mathcal{G}}).$$

- The map σ_{G} does not extend to a bounded operator on L^{2} .
- It is necessary to consider its extension to Sobolev spaces.

イロト 不得 とくほ とくほ とうほう

Canonical map σ_G

• For every $s \in \mathbb{R}$, put

 $H^{s}(X)$: Sobolev space of X of order s.

$$\begin{aligned} H^0_b(X)^G_s &:= \big\{ u \in H^s(X); \ \overline{\partial}_b u = 0, \ h^* u = u, \ \forall h \in G \big\}. \\ H^0_b(X_G)_s &:= \big\{ u \in H^s(X_G); \ \overline{\partial}_b u = 0 \big\}. \end{aligned}$$

Canonical map σ_G

• For every $s \in \mathbb{R}$, put

 $H^{s}(X)$: Sobolev space of X of order s.

$$\begin{aligned} H^0_b(X)^G_s &:= \big\{ u \in H^s(X); \ \overline{\partial}_b u = 0, \ h^* u = u, \ \forall h \in G \big\}. \\ H^0_b(X_G)_s &:= \big\{ u \in H^s(X_G); \ \overline{\partial}_b u = 0 \big\}. \end{aligned}$$

Theorem (Hsiao-Ma-Marinesc<u>u (2019))</u>

Suppose that $\overline{\partial}_{b,\chi_G}$ has L^2 closed range and the Levi form is positive definite near $\mu^{-1}(0)$.

• σ_{G} extends by density to a bounded operator

Theorem I (Hsiao-Ma-Marinescu (2019))

Suppose that $\overline{\partial}_{b,\chi_G}$ has L^2 closed range and the Levi form is positive definite near $\mu^{-1}(0)$.

- For every $s \in \mathbb{R}$, the map $\sigma_{G,s}$ is Fredholm.
- Ker σ_{G,s} and (Im σ_{G,s})[⊥] are finite dimensional subspaces of C[∞](X) ∩ H⁰_b(X)^G and C[∞](X_G) ∩ H⁰_b(X_G), respectively.
- Ker σ_{G,s} and the index dim Ker σ_{G,s} − dim (Im σ_{G,s})[⊥] are independent of s.

• Theorem I establishes "quantization commutes with reduction" for some contact manifolds.

イロト 不得 トイヨト イヨト 二日

- Theorem I establishes "quantization commutes with reduction" for some contact manifolds.
- If dim X_G ≥ 5 or X admits a transversal CR ℝ-action or X is a circle bundle, then ∂_{b,X_G} has L² closed range. (Kohn, Yeganefar-Marinescu).

イロト イヨト イヨト

- Theorem I establishes "quantization commutes with reduction" for some contact manifolds.
- If dim X_G ≥ 5 or X admits a transversal CR ℝ-action or X is a circle bundle, then ∂_{b,X_G} has L² closed range. (Kohn, Yeganefar-Marinescu).
- Let S_{X_G} be the orthogonal projection onto CR functions on X_G (Szegő projection).

- Theorem I establishes "quantization commutes with reduction" for some contact manifolds.
- If dim X_G ≥ 5 or X admits a transversal CR ℝ-action or X is a circle bundle, then ∂_{b,X_G} has L² closed range. (Kohn, Yeganefar-Marinescu).
- Let S_{X_G} be the orthogonal projection onto CR functions on X_G (Szegő projection).
- There is a pseudodifferential operator E on X_G of order $-\frac{d}{4}$ such that

$$\sigma := S_{X_G} \circ E \circ \sigma_G : H^0_b(X)^G \to H^0_b(X_G)$$

is Fredholm.

イロト 不得 トイヨト イヨト 二日

Applications: Complex manifolds

Theorem (Hsiao-Ma-Marinescu, application to circle bundles)

Suppose that R^{L} is positive near $\mu^{-1}(0)$. Then, for m large,

 $\dim H^0(M, L^m)^G = \dim H^0(M_G, L_G^m).$

Applications: Complex manifolds

Theorem (Hsiao-Ma-Marinescu, application to circle bundles)

Suppose that R^{L} is positive near $\mu^{-1}(0)$. Then, for m large,

 $\dim H^0(M, L^m)^G = \dim H^0(M_G, L_G^m).$

• For (0, q)-forms, Hsiao-Huang generalize Guillemin-Sternberg theorem to R^L nondegenerate case.

Applications: Complex manifolds

Theorem (Hsiao-Ma-Marinescu, application to circle bundles)

Suppose that R^{L} is positive near $\mu^{-1}(0)$. Then, for m large,

$$\dim H^0(M, L^m)^G = \dim H^0(M_G, L_G^m).$$

• For (0, q)-forms, Hsiao-Huang generalize Guillemin-Sternberg theorem to R^{L} nondegenerate case.

Theorem (Hsiao-Huang)

Assume that R^{L} has q negative eigenvalues and n - q positive eigenvalues and $R^{L}|_{M_{G}}$ has q - r negative eigenvalues and n - d - q + r positive eigenvalues. Then, for m large,

$$\dim H^q(M, L^m)^G = \dim H^{q-r}(M_G, L_G^m).$$

イロト イヨト イヨト

3

3. Geometric quantization on complex manifolds with boundary (Hsiao-Huang-Li-S.)

Complex manifolds with boundary

• Let M' be a complex manifold of dim_C M' = n.

・ロト ・ 同ト ・ ヨト ・ ヨト

Complex manifolds with boundary

- Let M' be a complex manifold of dim_C M' = n.
- Let M ⊂ M' be a relatively compact open subset with smooth boundary X.

イロト 不得 トイヨト イヨト

Complex manifolds with boundary

- Let M' be a complex manifold of $\dim_{\mathbb{C}} M' = n$.
- Let M ⊂ M' be a relatively compact open subset with smooth boundary X.
- Then X is a CR manifold with a natural CR structure

$$T^{1,0}X := T^{1,0}M'|_X \cap \mathbb{C}TX,$$

where $T^{1,0}M'$ denotes the holomorphic tangent bundle of M'.

イロト 不得 トイヨト イヨト 三日

Complex manifolds with boundary

- Let M' be a complex manifold of $\dim_{\mathbb{C}} M' = n$.
- Let M ⊂ M' be a relatively compact open subset with smooth boundary X.
- Then X is a CR manifold with a natural CR structure

$$T^{1,0}X := T^{1,0}M'|_X \cap \mathbb{C}TX,$$

where $T^{1,0}M'$ denotes the holomorphic tangent bundle of M'.

Take a Hermitian metric ⟨·|·⟩ for M'. Then ⟨·|·⟩ induces by duality a Hermitian metrics on CT*M' and on ∧^qT*^{0,1}M'. We denote all these Hermitian metrics by ⟨·|·⟩.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Complex manifolds with boundary

• Let $ho \in C^\infty(M',\mathbb{R})$ be a defining function of X, that is,

$$X = \{x \in M'; \ \rho(x) = 0\}, \ \ M = \{x \in M'; \ \rho(x) < 0\}$$

and $d\rho(x) \neq 0$ at every point $x \in X$ such that

$$\langle d
ho(x)|d
ho(x)
angle=1,\quad \forall x\in X.$$

イロト イヨト イヨト

Complex manifolds with boundary

• Let $ho \in C^\infty(M',\mathbb{R})$ be a defining function of X, that is,

$$X = \{x \in M'; \ \rho(x) = 0\}, \ \ M = \{x \in M'; \ \rho(x) < 0\}$$

and d
ho(x)
eq 0 at every point $x \in X$ such that

$$\langle d
ho(x)|d
ho(x)
angle=1, \quad orall x\in X.$$

• Put

$$\omega_0 = J(d\rho), \qquad T = J\left(\frac{\partial}{\partial \rho}\right),$$

where J is the complex structure map of M'.

<ロ> (四) (四) (三) (三) (三) (三)

Complex manifolds with boundary

• Let $ho \in C^\infty(M',\mathbb{R})$ be a defining function of X, that is,

$$X = \{x \in M'; \ \rho(x) = 0\}, \ \ M = \{x \in M'; \ \rho(x) < 0\}$$

and d
ho(x)
eq 0 at every point $x \in X$ such that

$$\langle d
ho(x)|d
ho(x)
angle=1, \quad orall x\in X.$$

• Put

$$\omega_0 = J(d\rho), \qquad T = J\left(\frac{\partial}{\partial \rho}\right),$$

where J is the complex structure map of M'.

• Thus, the Levi-form on X is exactly $\mathcal{L}_p(U, V) = \langle \partial \overline{\partial} \rho(p), U \wedge \overline{V} \rangle, \quad U, V \in T_p^{1,0} X.$

イロト イポト イヨト イヨト 三日

Holomorphic functions smooth up to the boundary

• The Cauchy-Riemann operator

$$\overline{\partial}:\mathcal{C}^\infty(\overline{M}\,) o \Omega^{0,1}(\overline{M}\,),$$

where $\mathcal{C}^{\infty}(\overline{M}) := \mathcal{C}^{\infty}(M')|_{M}$ and $\Omega^{0,1}(\overline{M}) := \Omega^{0,1}(M')|_{M}$.

Holomorphic functions smooth up to the boundary

• The Cauchy-Riemann operator

$$\overline{\partial}: \mathcal{C}^{\infty}(\overline{M}) \to \Omega^{0,1}(\overline{M}),$$

where $\mathcal{C}^{\infty}(\overline{M}) := \mathcal{C}^{\infty}(M')|_{M}$ and $\Omega^{0,1}(\overline{M}) := \Omega^{0,1}(M')|_{M}$.

• We extend $\overline{\partial}$ to L^2 space:

w

$$\overline{\partial}: \operatorname{Dom} \overline{\partial} \subset L^2(M) \to L^2_{(0,1)}(M),$$

here $\operatorname{Dom} \overline{\partial} = \left\{ u \in L^2(M); \, \overline{\partial} u \in L^2(M) \right\}.$

Holomorphic functions smooth up to the boundary

• The Cauchy-Riemann operator

$$\overline{\partial}: \mathcal{C}^{\infty}(\overline{M}) \to \Omega^{0,1}(\overline{M}),$$

where $\mathcal{C}^{\infty}(\overline{M}) := \mathcal{C}^{\infty}(M')|_{M}$ and $\Omega^{0,1}(\overline{M}) := \Omega^{0,1}(M')|_{M}$.

• We extend
$$\overline{\partial}$$
 to L^2 space:

$$\overline{\partial} : \operatorname{Dom} \overline{\partial} \subset L^2(M) \to L^2_{(0,1)}(M),$$

where $\operatorname{Dom} \overline{\partial} = \left\{ u \in L^2(M); \ \overline{\partial} u \in L^2(M) \right\}.$

•
$$H^0(\overline{M}) := \operatorname{Ker} \overline{\partial} = \left\{ u \in \operatorname{Dom} \overline{\partial} : \overline{\partial} u = 0 \right\}$$

the L^2 closure of the space of holomorphic functions which are smooth up to the boundary.

Holomorphic functions smooth up to the boundary

• The Cauchy-Riemann operator

$$\overline{\partial}: \mathcal{C}^{\infty}(\overline{M}) \to \Omega^{0,1}(\overline{M}),$$

where $\mathcal{C}^{\infty}(\overline{M}) := \mathcal{C}^{\infty}(M')|_{M}$ and $\Omega^{0,1}(\overline{M}) := \Omega^{0,1}(M')|_{M}$.

• We extend
$$\overline{\partial}$$
 to L^2 space:

$$\overline{\partial} : \operatorname{Dom} \overline{\partial} \subset L^2(M) \to L^2_{(0,1)}(M),$$

where $\operatorname{Dom} \overline{\partial} = \left\{ u \in L^2(M); \ \overline{\partial} u \in L^2(M) \right\}.$

•
$$H^0(\overline{M}) := \operatorname{Ker} \overline{\partial} = \left\{ u \in \operatorname{Dom} \overline{\partial} : \overline{\partial} u = 0 \right\}$$

the L^2 closure of the space of holomorphic functions which are smooth up to the boundary.

• The space $H^0(\overline{M})$ could be infinite dimensional.

・ロト ・ 同ト ・ ヨト ・ ヨト

Complex manifolds with group action

- Now, we assume that
 - *M*['] admits a *d*-dimensional connected compact Lie group *G* action with Lie algebra g.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Complex manifolds with group action

- Now, we assume that
 - *M*['] admits a *d*-dimensional connected compact Lie group *G* action with Lie algebra g.
 - The Lie group action G preserves $\omega_0 := J(d\rho)$ and J. i.e.,

$$g^*\omega_0=\omega_0$$
 and $g_*J=Jg_*, \quad \forall g\in G.$

イロト 不可 とう アイロト

Complex manifolds with group action

- Now, we assume that
 - *M*['] admits a *d*-dimensional connected compact Lie group *G* action with Lie algebra g.
 - The Lie group action G preserves $\omega_0 := J(d\rho)$ and J. i.e.,

$$g^*\omega_0=\omega_0$$
 and $g_*J=Jg_*, \quad \forall g\in G.$

• Goal: Study $H^0(\overline{M})^G$ the L^2 closure of the space of *G*-invariant holomorphic functions which are smooth up to the boundary.

イロト イヨト イヨト

Complex manifolds with group action

- Now, we assume that
 - *M*['] admits a *d*-dimensional connected compact Lie group *G* action with Lie algebra g.
 - The Lie group action G preserves $\omega_0 := J(d\rho)$ and J. i.e.,

$$g^*\omega_0=\omega_0$$
 and $g_*J=Jg_*, \quad \forall g\in G.$

- Goal: Study $H^{0}(\overline{M})^{G}$ the L^{2} closure of the space of *G*-invariant holomorphic functions which are smooth up to the boundary.
- Recall that $H^0(\overline{M})^G$ could be infinite dimensional.

Momentum map

Definition

The momentum map associated to the form ω_0 is the map $\mu: M' \to \mathfrak{g}^*$ such that, for all $x \in M'$ and $\xi \in \mathfrak{g}$, we have

$$\langle \mu(\mathbf{x}), \xi \rangle = \omega_0(\xi_{M'}(\mathbf{x})),$$

 $\xi \in \mathfrak{g}, \, \xi_{M'}$: the vector field on M' induced by ξ .

イロト 不可 とう アイロト

Momentum map

Definition

The momentum map associated to the form ω_0 is the map $\mu: M' \to \mathfrak{g}^*$ such that, for all $x \in M'$ and $\xi \in \mathfrak{g}$, we have

$$\langle \mu(\mathbf{x}), \xi \rangle = \omega_0(\xi_{M'}(\mathbf{x})),$$

 $\xi \in \mathfrak{g}, \ \xi_{M'}$: the vector field on M' induced by ξ .

Assumption

0 is a regular value of μ , G acts on $\mu^{-1}(0)$ freely and $i\partial\overline{\partial}\rho$ is positive definite near $\mu^{-1}(0)$.

Example

• Let
$$M = \{(z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 + |z_2|^2 + |z_3|^2 < 1\}.$$

ヘロト ヘヨト ヘヨト ヘヨト

æ

Example

• Let
$$M = \{(z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 + |z_2|^2 + |z_3|^2 < 1\}.$$

• Let $\omega_0 := J(d\rho)$, where $\rho := |z_1|^4 + |z_2|^2 + |z_3|^2 - 1$ and J is the complex structure map on $T\mathbb{C}^3$.

Example

• Let
$$M = \{(z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 + |z_2|^2 + |z_3|^2 < 1\}.$$

- Let $\omega_0 := J(d\rho)$, where $\rho := |z_1|^4 + |z_2|^2 + |z_3|^2 1$ and J is the complex structure map on $T\mathbb{C}^3$.
- *M* admits a *S*¹-action:

$$e^{i\theta} \circ (z_1, z_2, z_3) = (e^{-i\theta}z_1, e^{i\theta}z_2, e^{i\theta}z_3).$$

0 is a regular value of μ .

Example

• Let
$$M = \{(z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 + |z_2|^2 + |z_3|^2 < 1\}.$$

- Let $\omega_0 := J(d\rho)$, where $\rho := |z_1|^4 + |z_2|^2 + |z_3|^2 1$ and J is the complex structure map on $T\mathbb{C}^3$.
- *M* admits a *S*¹-action:

$$e^{i\theta} \circ (z_1, z_2, z_3) = (e^{-i\theta}z_1, e^{i\theta}z_2, e^{i\theta}z_3).$$

0 is a regular value of μ .

•
$$\mu^{-1}(0) = \left\{ (z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 < \frac{1}{3}, |z_2|^2 + |z_3|^2 < \frac{2}{3} \right\}.$$

Then $i\partial \overline{\partial} \rho$ is positive definite near $\mu^{-1}(0)$.

Complex reduction

Let

$$M'_{G} := \mu^{-1}(0)/G, \qquad M_{G} := (\mu^{-1}(0) \cap M)/G$$

and

$$X_{G} := (\mu^{-1}(0) \cap X)/G.$$

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Complex reduction

Let

$$M'_{G} := \mu^{-1}(0)/G, \qquad M_{G} := (\mu^{-1}(0) \cap M)/G$$

and

$$X_{G} := (\mu^{-1}(0) \cap X)/G.$$

• We assume that M_G and X_G are not empty.

イロト イポト イヨト イヨト

э

Complex reduction

Let

$$M'_G := \mu^{-1}(0)/G, \qquad M_G := (\mu^{-1}(0) \cap M)/G$$

and

$$X_{\mathcal{G}}:=(\mu^{-1}(0)\cap X)/G.$$

- We assume that M_G and X_G are not empty.
- Then M'_G is a complex manifold of dim_ℂ M'_G = n d and M_G ⊂ M'_G is a relatively compact open subset whose boundary X_G is a strongly pseudoconvex CR manifold.

Complex reduction

Let

$$M'_G := \mu^{-1}(0)/G, \qquad M_G := (\mu^{-1}(0) \cap M)/G$$

and

$$X_{\mathcal{G}}:=(\mu^{-1}(0)\cap X)/G.$$

- We assume that M_G and X_G are not empty.
- Then M'_G is a complex manifold of $\dim_{\mathbb{C}} M'_G = n d$ and $M_G \subset M'_G$ is a relatively compact open subset whose boundary X_G is a strongly pseudoconvex CR manifold.

• Question: Is
$$H^0(\overline{M})^G \cong H^0(\overline{M}_G)$$
?

Canonical map σ_G

• $\iota: \mu^{-1}(0) \to M'$: the natural inclusion.

 $\iota^*: \mathcal{C}^{\infty}(M') \to \mathcal{C}^{\infty}(\mu^{-1}(0))$: the pull-back by ι .

 $\iota_{\mathcal{G}}: \mathcal{C}^{\infty}(\mu^{-1}(0))^{\mathcal{G}} \to \mathcal{C}^{\infty}(\overline{M}_{\mathcal{G}})$: the natural identification.

$$\sigma_{\mathcal{G}} := \iota_{\mathcal{G}} \circ \iota^* : H^0(\overline{M})^{\mathcal{G}} \cap \mathcal{C}^{\infty}(\overline{M})^{\mathcal{G}} \to H^0(\overline{M}_{\mathcal{G}}) \cap \mathcal{C}^{\infty}(\overline{M}_{\mathcal{G}}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Canonical map σ_G

• $\iota: \mu^{-1}(0) \to M'$: the natural inclusion.

 $\iota^*: \mathcal{C}^{\infty}(M') \to \mathcal{C}^{\infty}(\mu^{-1}(0))$: the pull-back by ι .

 $\iota_{\mathcal{G}}: \mathcal{C}^{\infty}(\mu^{-1}(0))^{\mathcal{G}} \to \mathcal{C}^{\infty}(\overline{M}_{\mathcal{G}})$: the natural identification.

 $\sigma_{\mathsf{G}} := \iota_{\mathsf{G}} \circ \iota^* : H^0(\overline{M})^{\mathsf{G}} \cap \mathcal{C}^{\infty}(\overline{M})^{\mathsf{G}} \to H^0(\overline{M}_{\mathsf{G}}) \cap \mathcal{C}^{\infty}(\overline{M}_{\mathsf{G}}).$

• The map σ_G does not extend to a bounded operator on L^2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Canonical map σ_G

• $\iota: \mu^{-1}(0) \to M'$: the natural inclusion.

 $\iota^*: \mathcal{C}^{\infty}(M') \to \mathcal{C}^{\infty}(\mu^{-1}(0))$: the pull-back by ι .

 $\iota_{\mathcal{G}}: \mathcal{C}^{\infty}(\mu^{-1}(0))^{\mathcal{G}} \to \mathcal{C}^{\infty}(\overline{M}_{\mathcal{G}})$: the natural identification.

$$\sigma_{\mathcal{G}} := \iota_{\mathcal{G}} \circ \iota^* : H^0(\overline{M})^{\mathcal{G}} \cap \mathcal{C}^{\infty}(\overline{M})^{\mathcal{G}} \to H^0(\overline{M}_{\mathcal{G}}) \cap \mathcal{C}^{\infty}(\overline{M}_{\mathcal{G}}).$$

- The map σ_G does not extend to a bounded operator on L^2 .
- It is necessary to consider its extension to Sobolev spaces.

イロト 不得 とくほ とくほ とうほう

Canonical map σ_G

• For every $s \in \mathbb{R}$, put

 $H^{s}(\overline{M}): \text{ Sobolev space of } \overline{M} \text{ of order } s.$ $H^{0}(\overline{M})_{s}^{G} := \left\{ u \in H^{s}(\overline{M}); \ \overline{\partial}u = 0, \ h^{*}u = u, \ \forall h \in G \right\}.$ $H^{0}(\overline{M}_{G})_{s} := \left\{ u \in H^{s}(\overline{M}_{G}); \ \overline{\partial}u = 0 \right\}.$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Canonical map σ_G

• For every $s \in \mathbb{R}$, put

 $H^{s}(\overline{M}): \text{ Sobolev space of } \overline{M} \text{ of order } s.$ $H^{0}(\overline{M})_{s}^{G} := \left\{ u \in H^{s}(\overline{M}); \ \overline{\partial}u = 0, \ h^{*}u = u, \ \forall h \in G \right\}.$ $H^{0}(\overline{M}_{G})_{s} := \left\{ u \in H^{s}(\overline{M}_{G}); \ \overline{\partial}u = 0 \right\}.$

Theorem (Hsiao-Huang-Li-S.)

The operator $\overline{\partial}_{\overline{M}_G}$ has L^2 closed range.

• σ_{G} extends by density to a bounded operator

$$\sigma_{G} = \sigma_{G,s} : H^{0}(\overline{M})_{s}^{G} \to H^{0}(\overline{M}_{G})_{s-\frac{d}{4}}, \ \, \text{for every $s \in \mathbb{R}$}.$$

イロト イボト イヨト イヨト

Theorem II (Hsiao-Huang-Li-S.)

Suppose that $i\partial \overline{\partial} \rho$ is positive definite near $\mu^{-1}(0) \cap X$.

- For every $s \in \mathbb{R}$, the map $\sigma_{G,s}$ is Fredholm.
- Ker $\sigma_{G,s}$ and $(\operatorname{Im} \sigma_{G,s})^{\perp}$ are finite dimensional subspaces of $\mathcal{C}^{\infty}(\overline{M}) \cap H^{0}(\overline{M})^{G}$ and $\mathcal{C}^{\infty}(\overline{M}_{G}) \cap H^{0}(\overline{M}_{G})$, respectively.
- Ker σ_{G,s} and the index dim Ker σ_{G,s} − dim (Im σ_{G,s})[⊥] are independent of s.

• Theorem II establishes "quantization commutes with reduction" for some complex manifolds with boundary.

イロト イヨト イヨト

- Theorem II establishes "quantization commutes with reduction" for some complex manifolds with boundary.
- Let $B_{\overline{M}_G}$ be the orthogonal projection onto holomorphic functions (Bergman projection).

イロト イボト イヨト イヨト

- Theorem II establishes "quantization commutes with reduction" for some complex manifolds with boundary.
- Let $B_{\overline{M}_G}$ be the orthogonal projection onto holomorphic functions (Bergman projection).
- There is a Pseudodifferential operator E on \overline{M}_G of order $-\frac{d}{4}$ such that

$$\sigma := B_{\overline{M}_G} \circ E \circ \sigma_G : H^0(\overline{M})^G \to H^0(\overline{M}_G)$$

is Fredholm.

The outline of the proof of Theorem II

• Let *B_G* be the orthogonal projection onto *G*-invariant holomorphic functions (*G*-invariant Bergman projection).

- Let *B_G* be the orthogonal projection onto *G*-invariant holomorphic functions (*G*-invariant Bergman projection).
- Let B_G(x, y) ∈ D'(M × M) be the distribution kernel of B_G (G-invariant Bergman kernel).

- Let *B_G* be the orthogonal projection onto *G*-invariant holomorphic functions (*G*-invariant Bergman projection).
- Let B_G(x, y) ∈ D'(M × M) be the distribution kernel of B_G (G-invariant Bergman kernel).
- Develop some kind of G-invariant microlocal F.I.O. method.

G-invariant Bergman kernel asymptotics

• The following Theorem generalizes classical work of Fefferman to *G*-invaraint case.

Theorem III (Hsiao-Huang-Li-S.)

- B_G is smoothing outside $\mu^{-1}(0) \cap X$.
- In an open set U of $\mu^{-1}(0) \cap X$, we have

$$B_{\mathcal{G}}(x,y)\equiv\int_{0}^{\infty}e^{i\Phi(x,y)t}a(x,y,t)dt$$
 on $U imes U,$

- $a(x, y, t) \sim \sum_{j=0}^{\infty} a_j(x, y) t^{n-\frac{d}{2}-j}$ in $S_{1,0}^{n-\frac{d}{2}}(U \times U \times \mathbb{R}_+)$, $a_0(x, y) \neq 0$
- $d_x\Phi(x,x) = -d_y\Phi(x,x) = -\omega_0(x), \qquad \forall x \in \mu^{-1}(0) \cap X,$
- $\operatorname{Im} \Phi(x, y) \geq 0$, $\operatorname{Im} \Phi(x, x) \approx d(x, \mu^{-1}(0) \cap X)^2$.

The outline of the proof of Theorem II

• For every $s \in \mathbb{R}$, consider

$$\widehat{\sigma}_{G}: H^{s}(\overline{M}) \to H^{0}(\overline{M}_{G})_{s} \subset H^{s}(\overline{M}_{G}),$$

 $u \mapsto B_{\overline{M}_{G}} \circ E \circ \sigma_{G,s} \circ B_{G} \circ u.$

・ロト ・回ト ・ヨト ・ヨト

The outline of the proof of Theorem II

• For every $s \in \mathbb{R}$, consider

$$\widehat{\sigma}_{G}: H^{s}(\overline{M}) \to H^{0}(\overline{M}_{G})_{s} \subset H^{s}(\overline{M}_{G}),$$
$$u \mapsto B_{\overline{M}_{G}} \circ E \circ \sigma_{G,s} \circ B_{G} \circ u.$$

• *E*: some pseudodifferential operator on \overline{M}_G of order $-\frac{d}{4}$.

The outline of the proof of Theorem II

• For every $s \in \mathbb{R}$, consider

$$\widehat{\sigma}_{G}: H^{s}(\overline{M}) \to H^{0}(\overline{M}_{G})_{s} \subset H^{s}(\overline{M}_{G}),$$
$$u \mapsto B_{\overline{M}_{G}} \circ E \circ \sigma_{G,s} \circ B_{G} \circ u.$$

- *E*: some pseudodifferential operator on \overline{M}_G of order $-\frac{d}{4}$.
- Let $\widehat{\sigma}_{\mathcal{G}}^* : \mathcal{D}'(\overline{M}_{\mathcal{G}}) \to \mathcal{D}'(\overline{M})$ be the adjoint of $\widehat{\sigma}_{\mathcal{G}}$.

イロト イヨト イヨト

The outline of the proof of Theorem II

• For every $s \in \mathbb{R}$, consider

$$\widehat{\sigma}_{G}: H^{s}(\overline{M}) \to H^{0}(\overline{M}_{G})_{s} \subset H^{s}(\overline{M}_{G}),$$
$$u \mapsto B_{\overline{M}_{G}} \circ E \circ \sigma_{G,s} \circ B_{G} \circ u.$$

- *E*: some pseudodifferential operator on \overline{M}_G of order $-\frac{d}{4}$.
- Let $\widehat{\sigma}_{\mathcal{G}}^* : \mathcal{D}'(\overline{M}_{\mathcal{G}}) \to \mathcal{D}'(\overline{M})$ be the adjoint of $\widehat{\sigma}_{\mathcal{G}}$.

• Let
$$F := \widehat{\sigma}_{G}^{*} \widehat{\sigma}_{G}$$
.

イロト イヨト イヨト

The outline of the proof of Theorem II

• For every $s \in \mathbb{R}$, consider

$$\widehat{\sigma}_{G}: H^{s}(\overline{M}) \to H^{0}(\overline{M}_{G})_{s} \subset H^{s}(\overline{M}_{G}),$$
$$u \mapsto B_{\overline{M}_{G}} \circ E \circ \sigma_{G,s} \circ B_{G} \circ u.$$

- *E*: some pseudodifferential operator on \overline{M}_G of order $-\frac{d}{4}$.
- Let $\widehat{\sigma}_{\mathcal{G}}^* : \mathcal{D}'(\overline{M}_{\mathcal{G}}) \to \mathcal{D}'(\overline{M})$ be the adjoint of $\widehat{\sigma}_{\mathcal{G}}$.
- Let $F := \widehat{\sigma}_{G}^{*} \widehat{\sigma}_{G}$.

• Ker
$$\sigma_{G,s} \subset \operatorname{Ker} F \cap H^0(\overline{M})_s^G$$
.

イロト イボト イヨト イヨト

From Theorem III and by developing new technique of complex Fourier integral operators calculation, we can show that

• $F = C_0(I - R)B_G$, C_0 is a constant, R is also the same type of operator as B_G .

イロト イボト イヨト イヨト

From Theorem III and by developing new technique of complex Fourier integral operators calculation, we can show that

- $F = C_0(I R)B_G$, C_0 is a constant, R is also the same type of operator as B_G .
- I R is Fredholm.

From Theorem III and by developing new technique of complex Fourier integral operators calculation, we can show that

- $F = C_0(I R)B_G$, C_0 is a constant, R is also the same type of operator as B_G .
- I R is Fredholm.

• Since

 $\operatorname{Ker} \sigma_{G,s} \subset \operatorname{Ker} F \cap H^0(\overline{M})_s^G \subset \operatorname{Ker} (I - R) \cap H^0(\overline{M})_s^G,$

From Theorem III and by developing new technique of complex Fourier integral operators calculation, we can show that

- $F = C_0(I R)B_G$, C_0 is a constant, R is also the same type of operator as B_G .
- I R is Fredholm.

Since

 $\operatorname{Ker} \sigma_{G,s} \subset \operatorname{Ker} F \cap H^0(\overline{M})_s^G \subset \operatorname{Ker} (I - R) \cap H^0(\overline{M})_s^G,$

• Ker $\sigma_{G,s} \subset \mathcal{C}^{\infty}(\overline{M}) \cap H^0(\overline{M})^G$ is finite dimensional.

The outline of the proof of Theorem II

• Take some inner products $(\cdot | \cdot)_{\overline{M}_G,s}$ on $H^s(\overline{M}_G)$, for every $s \in \mathbb{R}$.

ヘロト 人間 とくほ とくほ とう

The outline of the proof of Theorem II

- Take some inner products $(\cdot | \cdot)_{\overline{M}_G,s}$ on $H^s(\overline{M}_G)$, for every $s \in \mathbb{R}$.
- $\hat{F} := \hat{\sigma}_G \hat{\sigma}_G^* = C_1 (I \hat{R}) B_{\overline{M}_G}, C_1$ is a constant, \hat{R} is also the same type of operator as $B_{\overline{M}_G}$.

イロト イヨト イヨト イヨト

The outline of the proof of Theorem II

- Take some inner products $(\cdot | \cdot)_{\overline{M}_G,s}$ on $H^s(\overline{M}_G)$, for every $s \in \mathbb{R}$.
- $\hat{F} := \hat{\sigma}_G \hat{\sigma}_G^* = C_1 (I \hat{R}) B_{\overline{M}_G}, C_1$ is a constant, \hat{R} is also the same type of operator as $B_{\overline{M}_G}$.
- $I \hat{R}$ is Fredholm.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Take some inner products $(\cdot | \cdot)_{\overline{M}_G, s}$ on $H^s(\overline{M}_G)$, for every $s \in \mathbb{R}$.
- $\hat{F} := \hat{\sigma}_G \hat{\sigma}_G^* = C_1 (I \hat{R}) B_{\overline{M}_G}, C_1$ is a constant, \hat{R} is also the same type of operator as $B_{\overline{M}_G}$.

•
$$I - \hat{R}$$
 is Fredholm.

Since

$$(\operatorname{Im} \sigma_{G,s})^{\perp} \subset \operatorname{Ker} (I - \hat{R}) \cap H^{0}(\overline{M}_{G})_{s - \frac{d}{4}},$$

- Take some inner products $(\cdot | \cdot)_{\overline{M}_G, s}$ on $H^s(\overline{M}_G)$, for every $s \in \mathbb{R}$.
- $\hat{F} := \hat{\sigma}_G \hat{\sigma}_G^* = C_1 (I \hat{R}) B_{\overline{M}_G}, C_1$ is a constant, \hat{R} is also the same type of operator as $B_{\overline{M}_G}$.

•
$$I - \hat{R}$$
 is Fredholm.

Since

$$(\operatorname{Im} \sigma_{G,s})^{\perp} \subset \operatorname{Ker} (I - \hat{R}) \cap H^0(\overline{M}_G)_{s - \frac{d}{4}},$$

• $(\operatorname{Im} \sigma_{G,s})^{\perp} \subset \mathcal{C}^{\infty}(\overline{M}_{G}) \cap H^{0}(\overline{M}_{G})$ is finite dimensional.

Thanks a lot!

Guokuan Shao Geometric quantization on complex manifolds with boundary

(日) (部) (E) (E) (E)