Complex Differential Geometry in the Solution of

 Arithmetico-Geometric Problems over Complex Function Fields
Ngaiming Mok

The University of Hong Kong

Conference on Several Complex Variables
Shanghai University
Shanghai, China
August 19, 2022

Moduli Space of Elliptic Curves

An elliptic curve is complex-analytically a compact Riemann surface S of genus 1 . In other words, $S:=\mathbb{C} / L$ for some lattice $L \subset \mathbb{C}$. Replacing L by λL for some $\lambda \in \mathbb{C}-\{0\}$, without loss of generality we may assume $L_{\tau}=\mathbb{Z}+\mathbb{Z} \tau, \operatorname{Im}(\tau)>0$, i.e., $\tau \in \mathcal{H}$, where $\mathcal{H}:=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$, the upper half plane. Write $S_{\tau}:=\mathbb{C} / L_{\tau}$.

Moduli Space of Elliptic Curves

An elliptic curve is complex-analytically a compact Riemann surface S of genus 1 . In other words, $S:=\mathbb{C} / L$ for some lattice $L \subset \mathbb{C}$. Replacing L by λL for some $\lambda \in \mathbb{C}-\{0\}$, without loss of generality we may assume $L_{\tau}=\mathbb{Z}+\mathbb{Z} \tau, \operatorname{Im}(\tau)>0$, i.e., $\tau \in \mathcal{H}$, where $\mathcal{H}:=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$, the upper half plane. Write $S_{\tau}:=\mathbb{C} / L_{\tau}$.

For $\tau, \tau^{\prime} \in \mathcal{H}$, we have $S_{\tau} \cong S_{\tau^{\prime}}$ if and only if there exists $\lambda \in \mathbb{C}$, $\lambda \neq 0$ such that $L_{\tau^{\prime}}=\lambda L_{\tau}$, i.e., if and only if $\tau^{\prime}=\frac{a \tau+b}{c \tau+d}$ where $a d-b c \neq 0$. Thus, the set of equivalence classes of \mathbb{C} / L is in one-to-one correspondence with $X=X(1):=\mathcal{H} / \mathbb{P} S L(2, \mathbb{Z}) . \mathbb{P} S L(2, \mathbb{Z})$ acts discretely on \mathcal{H} with fixed points. We have the j-function $j: X(1) \xrightarrow{\cong} \mathbb{C}$, and $\overline{X(1)}=\mathbb{P}^{1}$.

Moduli Space of Elliptic Curves

An elliptic curve is complex-analytically a compact Riemann surface S of genus 1 . In other words, $S:=\mathbb{C} / L$ for some lattice $L \subset \mathbb{C}$. Replacing L by λL for some $\lambda \in \mathbb{C}-\{0\}$, without loss of generality we may assume $L_{\tau}=\mathbb{Z}+\mathbb{Z} \tau, \operatorname{Im}(\tau)>0$, i.e., $\tau \in \mathcal{H}$, where $\mathcal{H}:=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\}$, the upper half plane. Write $S_{\tau}:=\mathbb{C} / L_{\tau}$.

For $\tau, \tau^{\prime} \in \mathcal{H}$, we have $S_{\tau} \cong S_{\tau^{\prime}}$ if and only if there exists $\lambda \in \mathbb{C}$, $\lambda \neq 0$ such that $L_{\tau^{\prime}}=\lambda L_{\tau}$, i.e., if and only if $\tau^{\prime}=\frac{a \tau+b}{c \tau+d}$ where $a d-b c \neq 0$. Thus, the set of equivalence classes of \mathbb{C} / L is in one-to-one correspondence with $X=X(1):=\mathcal{H} / \mathbb{P} S L(2, \mathbb{Z}) . \mathbb{P} S L(2, \mathbb{Z})$ acts discretely on \mathcal{H} with fixed points. We have the j-function $j: X(1) \xrightarrow{\cong} \mathbb{C}$, and $\overline{X(1)}=\mathbb{P}^{1}$.

A suitable finite-index subgroup $\Gamma \subset \mathbb{P} S L(2, \mathbb{Z})$ acts on \mathcal{H} without fixed points and $X_{\Gamma}:=\mathcal{H} / \Gamma$ can be compactified to a compact Riemann surface.

The j-function

On the upper half plane $\mathcal{H}=\{\tau: \operatorname{Im}(\tau)>0\}$ define

$$
j(\tau)=1728 \frac{g_{2}(\tau)^{3}}{g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}}=1728 \frac{g_{2}(\tau)^{3}}{\Delta(\tau)}
$$

where $g_{2}(\tau)=60 \sum_{(m, n) \neq(0,0)}(m+n \tau)^{-4} ; g_{3}(\tau)=140 \sum_{(m, n) \neq(0,0)}(m+n \tau)^{-6}$. and $\Delta(\tau):=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}$ is the modular discriminant.

The j-function

On the upper half plane $\mathcal{H}=\{\tau: \operatorname{Im}(\tau)>0\}$ define

$$
j(\tau)=1728 \frac{g_{2}(\tau)^{3}}{g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}}=1728 \frac{g_{2}(\tau)^{3}}{\Delta(\tau)}
$$

where $g_{2}(\tau)=60 \sum_{(m, n) \neq(0,0)}(m+n \tau)^{-4} ; g_{3}(\tau)=140 \sum_{(m, n) \neq(0,0)}(m+n \tau)^{-6}$.
and $\Delta(\tau):=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}$ is the modular discriminant.

The j-function establishes a biholomorphism $j: \mathcal{H} / \mathrm{SL}(2, \mathbb{Z}) \xrightarrow{\cong} \mathbb{C}$.

Invariant Kähler metrics on $\mathcal{H} \times \mathbb{C}$

On $\pi: \mathcal{H} \times \mathbb{C} \rightarrow \mathcal{H}$, there is the relative tangent bundle $V=T_{\pi}$, and the horizontal real-analytic integrable subbundle $H \subset T(\mathcal{H} \times \mathbb{C})$ whose leaves are images of horizontal sections $w=a+b \tau, a, b \in \mathbb{R}$. We have $T(\mathcal{H} \times \mathbb{C})=V \oplus H$. There is a semi-Kähler form μ with kernel H so that, denoting by ω the Kähler form of the Poincaré metric on \mathcal{H}, and defining $\nu_{t}:=\pi^{*} \omega+t^{2} \mu, t>0,\left(\mathcal{H} \times \mathbb{C}, \nu_{t}\right)$ is a Kähler form invariant under $\mathrm{SL}(2, \mathbb{R}) \ltimes \mathbb{R}^{2}$. Let $\Gamma \subset \mathrm{SL}(2, \mathbb{Z})$ be a torsion-free finite index subgroup. Write $X_{\Gamma}^{0}:=\mathcal{H} / \Gamma, \mathcal{M}_{\Gamma}^{0}=(\mathcal{H} \times \mathbb{C}) /\left(\Gamma \ltimes \mathbb{Z}^{2}\right), \pi: \mathcal{M}_{\Gamma} \rightarrow X_{\Gamma}$ а compactification to a minimal elliptic surface over the projective curve X_{Γ}.

Verticality of a section

Let $\sigma: X_{\Gamma} \rightarrow \mathcal{M}_{\Gamma}$ be a holomorphic section and $d \sigma: T X_{\Gamma} \rightarrow \sigma^{*} T\left(\mathcal{M}_{\Gamma}\right)$ be its differential. Define the verticality of σ as $\eta_{\sigma}:=\left.\Pi_{V} \circ d \sigma\right|_{T\left(X_{\Gamma}^{0}\right)}: T\left(X_{\Gamma}^{0}\right) \rightarrow \sigma^{*} V$. Thus, η_{σ} is a real-analytic section of the holomorphic line bundle $T^{*}\left(X_{\Gamma}^{0}\right) \otimes \sigma^{*} V$ on X_{Γ}^{0}.

Shioda's Theorem: A differential-geometric proof

Proposition (geometric characterization of torsion sections)

 $\eta_{\sigma} \equiv 0$ if and only if σ is a torsion section.
Shioda's Theorem: A differential-geometric proof

Proposition (geometric characterization of torsion sections)

 $\eta_{\sigma} \equiv 0$ if and only if σ is a torsion section.Shioda's Theorem (diff.-geom. proof by Mok (1991))
The Mordell-Well group of the elliptic curve E_{Γ} over $\mathbb{C}\left(X_{\Gamma}\right)$ is finite.

Shioda's Theorem: A differential-geometric proof

Proposition (geometric characterization of torsion sections)

$\eta_{\sigma} \equiv 0$ if and only if σ is a torsion section.

Shioda's Theorem (diff.-geom. proof by Mok (1991))

The Mordell-Well group of the elliptic curve E_{Γ} over $\mathbb{C}\left(X_{\Gamma}\right)$ is finite.

Proof: Given a holomorphic section $\sigma: X_{\Gamma} \rightarrow \mathcal{M}_{\Gamma} \sigma$ corresponds to $f: \mathcal{H} \rightarrow \mathbb{C}$ satisfying $f(\gamma \tau)=\frac{f(\tau)}{c_{\gamma} \tau+d_{\gamma}}+A_{\gamma}(\gamma \tau)+B_{\gamma}$ for some integers A_{γ}, B_{γ}, in which $\gamma(\tau)=\frac{a_{\gamma} \tau+b_{\gamma}}{c_{\gamma}+d_{\gamma}}$. Then, $f^{\prime \prime}(\gamma \tau)=\left(c_{\gamma} \tau+d_{\gamma}\right)^{3} f^{\prime \prime}(\tau)$. (Eichler) We discovered that $\xi_{\sigma}:=f^{\prime \prime}(\tau)(d \tau)^{\frac{3}{2}}$ is actually given by $\xi_{\sigma}=\nabla \eta_{\sigma}$. We have $\bar{\partial} \xi_{\sigma}=0$, hence $\bar{\partial} \nabla \eta_{\sigma}=0$. Interchanging the order of differention we have $\bar{\nabla}^{*} \bar{\nabla} \eta_{\sigma}=-\eta_{\sigma}$. Integrating by parts we get $\int_{X_{\Gamma}}\left\|\eta_{\sigma}\right\|^{2} \omega=-\int_{X_{\Gamma}}\left\|\bar{\nabla} \eta_{\sigma}\right\|^{2} \omega$, forcing $\eta_{\sigma} \equiv 0$, hence σ is a torsion section.

Betti coordinates and the Betti map of a section

Betti coordinates

On $\mathcal{H} \times \mathbb{C}$, for a point (τ, w), express w in terms of a basis of the lattice L_{τ}, e.g., $w=\beta_{1} \cdot 1+\beta_{2} \tau$. The pair $\left(\beta_{1}, \beta_{2}\right)$ are Betti coordinates.

Betti coordinates and the Betti map of a section

Betti coordinates

On $\mathcal{H} \times \mathbb{C}$, for a point (τ, w), express w in terms of a basis of the lattice L_{τ}, e.g., $w=\beta_{1} \cdot 1+\beta_{2} \tau$. The pair $\left(\beta_{1}, \beta_{2}\right)$ are Betti coordinates.

The Betti map associated to a holomorphic section σ
For a holomorphic section $\sigma: X_{\Gamma} \rightarrow \mathcal{M}_{\Gamma}$, the local pullback $\beta:=\left(\sigma^{*} \beta_{1}, \sigma^{*} \beta_{2}\right)$ is called the Betti map of σ. Since the construction of $\left(\beta_{1}, \beta_{2}\right)$ involves a choice of abelian logarithm on \mathcal{M}_{Γ}^{0}, so does the Betti map β, but the vanishing order of β at any point $b \in B^{0}$ is independent of such choice and is intrinsic to the section σ.

The Betti map

The following definition is due to Corvaja-Demeio-Masser-Zannier.
The Betti multiplicity of a Betti map at a finite point
The multiplicity of a Betti map β at b is defined to be the smallest positive integer $m(b)$ such that the partial derivatives of $\sigma^{*} \beta_{1}, \sigma^{*} \beta_{2}$ at b vanish up to order $m(b)-1$. We will also call $m(b)$ the Betti multiplicity of σ at b.

The Betti map

The following definition is due to Corvaja-Demeio-Masser-Zannier.

The Betti multiplicity of a Betti map at a finite point

The multiplicity of a Betti map β at b is defined to be the smallest positive integer $m(b)$ such that the partial derivatives of $\sigma^{*} \beta_{1}, \sigma^{*} \beta_{2}$ at b vanish up to order $m(b)-1$. We will also call $m(b)$ the Betti multiplicity of σ at b.

The Betti multiplicity of a Betti map at a cusp

When a holomorphic section σ cuts over a base point c of bad reduction, i.e., corresponding to a cusp, we express the section σ locally near the cusp c in terms of toroidal compactification $\Sigma(w)=(\xi(w), \zeta(w))$ If $|\xi(0)|=1$, then we define the Betti multiplicity m_{c} of σ at c to be the vanishing order of $\xi(w)-\xi(0)$ at $w=0$. Otherwise, we define $m_{c}=1$.

Betti Multiplicities for a Section of an Elliptic Surface

Theorem (Ulmer-Ursúa IMRN 2021)

Suppose $\pi: \mathcal{E} \rightarrow B$ is a non-isotrivial minimal elliptic surface, with exactly δ singular fibers, and $\sigma: B \rightarrow \mathcal{E}$ be a section of infinite order. Denote by g be the genus of B. Let O denote the zero section of \mathcal{E} and denote by d the degree of the holomorphic line bundle $O^{*} \Omega_{\mathcal{E} \mid C}^{1}$, where $\Omega_{\mathcal{E} \mid C}^{1}$ denotes the dual of the relative tangent bundle. Denote by $S \subset B$ the set of base points of singular fibers, and write $B^{0}:=B-S$. Then,

$$
\sum_{b \in B^{0}}\left(m_{b}-1\right) \leq 2 g-2-d+\delta .
$$

Betti Multiplicities for a Section of an Elliptic Surface

Theorem (Ulmer-Ursúa IMRN 2021)

Suppose $\pi: \mathcal{E} \rightarrow B$ is a non-isotrivial minimal elliptic surface, with exactly δ singular fibers, and $\sigma: B \rightarrow \mathcal{E}$ be a section of infinite order. Denote by g be the genus of B. Let O denote the zero section of \mathcal{E} and denote by d the degree of the holomorphic line bundle $O^{*} \Omega_{\mathcal{E} \mid C}^{1}$, where $\Omega_{\mathcal{E} \mid C}^{1}$ denotes the dual of the relative tangent bundle. Denote by $S \subset B$ the set of base points of singular fibers, and write $B^{0}:=B-S$. Then,

$$
\sum_{b \in B^{0}}\left(m_{b}-1\right) \leq 2 g-2-d+\delta .
$$

(a) The finiteness of points of B^{0} with multiplicities ≥ 2 was due to Corvaja-Demeio-Masser-Zannier (Crelles 2022)
(b) Multiplities m_{c} at cusps were defined algebraically and using the Kodaira classification of elliptic surfaces, and the analytic definition of Mok- Ng using toroidal coordinates agree with the algebraic definition.
Equality was proven when the sum on the left hand side is replaced by taking all $b \in B$, including the cusps.

Theorem (Mok-Ng 2022)

Let $\mathcal{E} \rightarrow B$ be an elliptic surface over a projective curve B with a classifying map $f: B \rightarrow X$ of degree d, where $X=X_{\Gamma(k)}$ for some $k \geq 3$. Let σ be a non-torsion section of \mathcal{E} and m_{b} be the Betti multiplicity of σ at b, then

$$
\sum_{b \in B}\left(m_{b}-1\right)=\sum_{b \in B \backslash S}\left(r_{b}-1\right)+\frac{d}{2 \pi} \int_{X^{0}} \omega,
$$

where $X^{0}=X_{\Gamma(k)}^{0}$ and $S=f^{-1}\left(X \backslash X^{0}\right) ; r_{b}$ is the ramification index of f at b and ω is the Kähler form on X^{0} descending from the invariant form $-i \partial \partial \log \operatorname{Im} \tau$ on \mathcal{H}.

Theorem (Mok-Ng 2022)

Let $\mathcal{E} \rightarrow B$ be an elliptic surface over a projective curve B with a classifying map $f: B \rightarrow X$ of degree d, where $X=X_{\Gamma(k)}$ for some $k \geq 3$. Let σ be a non-torsion section of \mathcal{E} and m_{b} be the Betti multiplicity of σ at b, then

$$
\sum_{b \in B}\left(m_{b}-1\right)=\sum_{b \in B \backslash S}\left(r_{b}-1\right)+\frac{d}{2 \pi} \int_{X^{0}} \omega,
$$

where $X^{0}=X_{\Gamma(k)}^{0}$ and $S=f^{-1}\left(X \backslash X^{0}\right) ; r_{b}$ is the ramification index of f at b and ω is the Kähler form on X^{0} descending from the invariant form $-i \partial \bar{\partial} \log \operatorname{Im} \tau$ on \mathcal{H}.

The general case can be reduced to the case with classifying maps.

Diff.-geom. proof for estimates on Betti multiplicities

Theorem (Mok-Ng 2022)

Let $\mathcal{E} \rightarrow B$ be an elliptic surface over a projective curve B with a classifying map $f: B \rightarrow X$ of degree d, where $X=X_{\Gamma(k)}$ for some $k \geq 3$. Let σ be a non-torsion section of \mathcal{E} and m_{b} be the Betti multiplicity of σ at b, then

$$
\sum_{b \in B}\left(m_{b}-1\right)=\sum_{b \in B \backslash S}\left(r_{b}-1\right)+\frac{d}{2 \pi} \int_{X^{0}} \omega,
$$

where $X^{0}=X_{\Gamma(k)}^{0}$ and $S=f^{-1}\left(X \backslash X^{0}\right) ; r_{b}$ is the ramification index of f at b and ω is the Kähler form on X^{0} descending from the invariant form $-i \partial \bar{\partial} \log \operatorname{Im} \tau$ on \mathcal{H}.

The general case can be reduced to the case with classifying maps.

Corollary

Denote by \mathfrak{B}_{σ} the divisor of points on B^{0} over which the Betti multiplicity $m_{b} \geq 2$, with weight $m_{b}-1$ at each of these points. We have $\left.\left|\mathfrak{B}_{\sigma}\right| \leq 2 g-2-\operatorname{deg}\left(f^{*}\left(K_{X} \otimes S_{X}\right)^{\frac{1}{2}}\right)\right)+|S|$, where g is the genus of B.

Mordell-Weil Groups Complex Function Fields

Main Theorem (Mok-To (Crelles 1991))

Let $\pi: \mathscr{A}_{\Gamma} \rightarrow X_{\Gamma}$ be a Kuga family of polarized abelian varieties without locally constant parts, $\bar{\pi}: \overline{\mathscr{A}_{\Gamma}} \rightarrow \overline{X_{\Gamma}}$ be a projective compactification which is a geometic model for the associated modular polarized abelian variety A_{Γ} over $\mathbb{C}\left(\overline{X_{\Gamma}}\right.$. Then, there are at most a finite number of meromorphic sections of $\overline{\mathcal{A}_{\Gamma}}$ over $\overline{X_{\ulcorner }}$, i.e., $\operatorname{rank}_{\mathbb{Z}}\left(A_{\Gamma}\left(\mathbb{C}\left(\overline{X_{\Gamma}}\right)\right)\right)=0$ for the Mordell-Weil group $A_{\Gamma}\left(\mathbb{C}\left(\overline{X_{\Gamma}}\right)\right.$.

Mordell-Weil Groups Complex Function Fields

Main Theorem (Mok-To (Crelles 1991))

Let $\pi: \mathscr{A}_{\Gamma} \rightarrow X_{\Gamma}$ be a Kuga family of polarized abelian varieties without locally constant parts, $\bar{\pi}: \overline{\mathscr{A}_{\Gamma}} \rightarrow \overline{X_{\Gamma}}$ be a projective compactification which is a geometic model for the associated modular polarized abelian variety A_{Γ} over $\mathbb{C}\left(\overline{X_{\Gamma}}\right.$. Then, there are at most a finite number of meromorphic sections of $\overline{\mathcal{A}_{\Gamma}}$ over $\overline{X_{\Gamma}}$, i.e., $\operatorname{rank}_{\mathbb{Z}}\left(A_{\Gamma}\left(\mathbb{C}\left(\overline{X_{\Gamma}}\right)\right)\right)=0$ for the Mordell-Weil group $A_{\Gamma}\left(\mathbb{C}\left(\overline{X_{\Gamma}}\right)\right.$.

Mordell-Weil group for $f: B \rightarrow X_{\Gamma}$ dominant and equidimensional

Theorem(Mok 1991) Let $\Gamma \subset \operatorname{Sp}(g, \mathbb{Z})$ be torsion-free. Suppose $\operatorname{dim}(B)=\operatorname{dim}\left(X_{\Gamma}\right)$ and $f: B \rightarrow X_{\Gamma}$ is a dominant classifying map. Denote by A_{f} the elliptic curve over $\mathbb{C}(\bar{B})$ obtained by pulling back the universal abelian variety A_{Γ} over $\mathbb{C}\left(\overline{X_{\Gamma}}\right)$ by the classifying map f. Then, $\operatorname{rank}_{\mathbb{Z}} A_{f}(\mathbb{C}(\bar{B})) \leq C \cdot \operatorname{Volume}\left(R_{f}, \omega\right)$,
where ω is the Kähler-Einstein (1,1)-form on X_{Γ}, C is a universal constant depending only on X_{Γ}, and R_{f} is the ramification divisor $f: B \rightarrow X_{\Gamma}$.

Shimura varieties: An example

The Siegel upper half-plane \mathcal{H}_{g}
$L \subset \mathbb{C}^{n}$ lattice, $\mathbb{C} / L=A \cong S^{1} \times \cdots \times S^{1}(2 \mathrm{~g}$ copies $), H^{1}(A, \mathbb{R}) \cong \mathbb{R}^{2 g}$ first de Rham cohomology group. A is called an Abelian variety if $A \hookrightarrow \mathbb{P}^{N}$ is (projective)-algebraic.

Shimura varieties: An example

The Siegel upper half-plane \mathcal{H}_{g}
$L \subset \mathbb{C}^{n}$ lattice, $\mathbb{C} / L=A \cong S^{1} \times \cdots \times S^{1}\left(2 \mathrm{~g}\right.$ copies), $H^{1}(A, \mathbb{R}) \cong \mathbb{R}^{2 g}$ first de Rham cohomology group. A is called an Abelian variety if $A \hookrightarrow \mathbb{P}^{N}$ is (projective)-algebraic.
A (principally polarized) Abelian variety corresponds to an n-by- n matrix τ obeying Riemann bilinear relations (a) τ is symmetric, (b) $\operatorname{Im}(\tau)>0$.

Shimura varieties: An example

The Siegel upper half-plane \mathcal{H}_{g}
$L \subset \mathbb{C}^{n}$ lattice, $\mathbb{C} / L=A \cong S^{1} \times \cdots \times S^{1}\left(2 \mathrm{~g}\right.$ copies), $H^{1}(A, \mathbb{R}) \cong \mathbb{R}^{2 g}$ first de Rham cohomology group. A is called an Abelian variety if $A \hookrightarrow \mathbb{P}^{N}$ is (projective)-algebraic.
A (principally polarized) Abelian variety corresponds to an n-by- n matrix τ obeying Riemann bilinear relations (a) τ is symmetric, (b) $\operatorname{Im}(\tau)>0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots \tau_{g}$ of $\tau, A_{\tau}:=\mathbb{C}^{g} / L_{\tau} . \mathcal{H}_{g}:=\left\{\tau \in M_{g}(\mathbb{C}): \tau^{t}=\tau ; \operatorname{Im}(\tau)>0\right\}$.
The Cayley transform $\kappa(\tau)=\left(\tau-\imath l_{g}\right)\left(\tau+\imath l_{g}\right)^{-1}$ gives a biholomorphism $\kappa: \mathcal{H}_{g} \xrightarrow{\cong} D_{g}^{\prime \prime \prime}=\left\{Z \in M_{g}(\mathbb{C}): Z^{t}=Z, I-\bar{Z} Z>0\right\}$ with a BSD.

Shimura varieties: An example

The Siegel upper half-plane \mathcal{H}_{g}
$L \subset \mathbb{C}^{n}$ lattice, $\mathbb{C} / L=A \cong S^{1} \times \cdots \times S^{1}(2 \mathrm{~g}$ copies $), H^{1}(A, \mathbb{R}) \cong \mathbb{R}^{2 g}$ first de Rham cohomology group. A is called an Abelian variety if $A \hookrightarrow \mathbb{P}^{N}$ is (projective)-algebraic.
A (principally polarized) Abelian variety corresponds to an n-by- n matrix τ obeying Riemann bilinear relations (a) τ is symmetric, (b) $\operatorname{Im}(\tau)>0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots \tau_{g}$ of $\tau, A_{\tau}:=\mathbb{C}^{g} / L_{\tau} . \mathcal{H}_{g}:=\left\{\tau \in M_{g}(\mathbb{C}): \tau^{t}=\tau ; \operatorname{Im}(\tau)>0\right\}$.
The Cayley transform $\kappa(\tau)=\left(\tau-\imath l_{g}\right)\left(\tau+\imath l_{g}\right)^{-1}$ gives a biholomorphism $\kappa: \mathcal{H}_{g} \xrightarrow{\cong} D_{g}^{\prime \prime \prime}=\left\{Z \in M_{g}(\mathbb{C}): Z^{t}=Z, I-\bar{Z} Z>0\right\}$ with a BSD.
We have a Hodge decomposition $H^{1}(A, \mathbb{C})=H^{0}\left(A, \Omega_{A}\right) \oplus H^{1}\left(A, \mathcal{O}_{A}\right)$ in terms of $\bar{\partial}$-cohomology and harmonic forms.

Shimura varieties: An example

The Siegel upper half-plane \mathcal{H}_{g}

$L \subset \mathbb{C}^{n}$ lattice, $\mathbb{C} / L=A \cong S^{1} \times \cdots \times S^{1}(2 \mathrm{~g}$ copies $), H^{1}(A, \mathbb{R}) \cong \mathbb{R}^{2 g}$ first de Rham cohomology group. A is called an Abelian variety if $A \hookrightarrow \mathbb{P}^{N}$ is (projective)-algebraic.
A (principally polarized) Abelian variety corresponds to an n-by- n matrix τ obeying Riemann bilinear relations (a) τ is symmetric, (b) $\operatorname{Im}(\tau)>0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots \tau_{g}$ of $\tau, A_{\tau}:=\mathbb{C}^{g} / L_{\tau} . \mathcal{H}_{g}:=\left\{\tau \in M_{g}(\mathbb{C}): \tau^{t}=\tau ; \operatorname{Im}(\tau)>0\right\}$.
The Cayley transform $\kappa(\tau)=\left(\tau-\imath l_{g}\right)\left(\tau+\imath l_{g}\right)^{-1}$ gives a biholomorphism $\kappa: \mathcal{H}_{g} \xrightarrow{\cong} D_{g}^{\prime \prime \prime}=\left\{Z \in M_{g}(\mathbb{C}): Z^{t}=Z, I-\bar{Z} Z>0\right\}$ with a BSD.
We have a Hodge decomposition $H^{1}(A, \mathbb{C})=H^{0}\left(A, \Omega_{A}\right) \oplus H^{1}\left(A, \mathcal{O}_{A}\right)$ in terms of $\bar{\partial}$-cohomology and harmonic forms.
$\operatorname{Sp}(g ; \mathbb{R})$ acts on \mathcal{H}_{g} as hol. isometries. The arithmetic subgroup $\operatorname{Sp}(g ; \mathbb{Z}) \subset \operatorname{Sp}(g ; \mathbb{R})$ acts on \mathcal{H}_{g} as a discrete group.

Shimura varieties: An example

The Siegel upper half-plane \mathcal{H}_{g}

$L \subset \mathbb{C}^{n}$ lattice, $\mathbb{C} / L=A \cong S^{1} \times \cdots \times S^{1}(2 \mathrm{~g}$ copies $), H^{1}(A, \mathbb{R}) \cong \mathbb{R}^{2 g}$ first de Rham cohomology group. A is called an Abelian variety if $A \hookrightarrow \mathbb{P}^{N}$ is (projective)-algebraic.
A (principally polarized) Abelian variety corresponds to an n-by- n matrix τ obeying Riemann bilinear relations (a) τ is symmetric, (b) $\operatorname{Im}(\tau)>0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots \tau_{g}$ of $\tau, A_{\tau}:=\mathbb{C}^{g} / L_{\tau} . \mathcal{H}_{g}:=\left\{\tau \in M_{g}(\mathbb{C}): \tau^{t}=\tau ; \operatorname{Im}(\tau)>0\right\}$.
The Cayley transform $\kappa(\tau)=\left(\tau-\imath l_{g}\right)\left(\tau+\imath l_{g}\right)^{-1}$ gives a biholomorphism $\kappa: \mathcal{H}_{g} \xrightarrow{\cong} D_{g}^{\prime \prime \prime}=\left\{Z \in M_{g}(\mathbb{C}): Z^{t}=Z, I-\bar{Z} Z>0\right\}$ with a BSD.
We have a Hodge decomposition $H^{1}(A, \mathbb{C})=H^{0}\left(A, \Omega_{A}\right) \oplus H^{1}\left(A, \mathcal{O}_{A}\right)$ in terms of $\bar{\partial}$-cohomology and harmonic forms.
$\operatorname{Sp}(g ; \mathbb{R})$ acts on \mathcal{H}_{g} as hol. isometries. The arithmetic subgroup $\operatorname{Sp}(g ; \mathbb{Z}) \subset \operatorname{Sp}(g ; \mathbb{R})$ acts on \mathcal{H}_{g} as a discrete group. $\mathcal{A}_{g}:=\mathcal{H}_{g} / \operatorname{Sp}(g ; \mathbb{Z})$ is called the Siegel modular variety.

Shimura varieties: An example

The Siegel upper half-plane \mathcal{H}_{g}

$L \subset \mathbb{C}^{n}$ lattice, $\mathbb{C} / L=A \cong S^{1} \times \cdots \times S^{1}(2 \mathrm{~g}$ copies $), H^{1}(A, \mathbb{R}) \cong \mathbb{R}^{2 g}$ first de Rham cohomology group. A is called an Abelian variety if $A \hookrightarrow \mathbb{P}^{N}$ is (projective)-algebraic.
A (principally polarized) Abelian variety corresponds to an n-by- n matrix τ obeying Riemann bilinear relations (a) τ is symmetric, (b) $\operatorname{Im}(\tau)>0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots \tau_{g}$ of $\tau, A_{\tau}:=\mathbb{C}^{g} / L_{\tau} . \mathcal{H}_{g}:=\left\{\tau \in M_{g}(\mathbb{C}): \tau^{t}=\tau ; \operatorname{Im}(\tau)>0\right\}$.
The Cayley transform $\kappa(\tau)=\left(\tau-\imath l_{g}\right)\left(\tau+\imath l_{g}\right)^{-1}$ gives a biholomorphism $\kappa: \mathcal{H}_{g} \xrightarrow{\cong} D_{g}^{\prime \prime \prime}=\left\{Z \in M_{g}(\mathbb{C}): Z^{t}=Z, I-\bar{Z} Z>0\right\}$ with a BSD.
We have a Hodge decomposition $H^{1}(A, \mathbb{C})=H^{0}\left(A, \Omega_{A}\right) \oplus H^{1}\left(A, \mathcal{O}_{A}\right)$ in terms of $\bar{\partial}$-cohomology and harmonic forms.
$\mathrm{Sp}(g ; \mathbb{R})$ acts on \mathcal{H}_{g} as hol. isometries. The arithmetic subgroup $\operatorname{Sp}(g ; \mathbb{Z}) \subset \operatorname{Sp}(g ; \mathbb{R})$ acts on \mathcal{H}_{g} as a discrete group. $\mathcal{A}_{g}:=\mathcal{H}_{g} / \operatorname{Sp}(g ; \mathbb{Z})$ is called the Siegel modular variety. In general, for Ω a BSD and an arithmetic subgroup $\Gamma \subset \operatorname{Aut}(\Omega), X_{\Gamma}:=\Omega / \Gamma$ is called a Shimura variety.

Irreducible Bounded Symmetric Domains

The rank-1 case
The complex unit ball $\mathbb{B}^{n}:=\left\{z \in \mathbb{C}^{n}:\|z\|^{2}<1\right\}$

Irreducible Bounded Symmetric Domains

The rank-1 case

The complex unit ball $\mathbb{B}^{n}:=\left\{z \in \mathbb{C}^{n}:\|z\|^{2}<1\right\}$

Classical domains in general

$$
\begin{gathered}
D^{\prime}(p, q)=\left\{Z \in M(p, q, \mathbb{C}): I-\bar{Z}^{t} Z>0\right\}, \quad p, q \geq 1 \\
D_{n}^{\prime \prime}(n, n)=\left\{Z \in D_{n, n}^{\prime}: Z^{t}=-Z\right\}, \quad n \geq 2 \\
D_{n}^{\prime \prime \prime}=\left\{Z \in D_{n, n}^{\prime}: Z^{t}=Z\right\}, \quad n \geq 3 \\
D_{n}^{\prime V}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\|z\|^{2}<2 ;\right. \\
\left.\|z\|^{2}<1+\left|\frac{1}{2} \sum_{i=1}^{n} z_{i}^{2}\right|^{2}\right\}, \quad n \geq 3 .
\end{gathered}
$$

Irreducible Bounded Symmetric Domains

The rank-1 case
The complex unit ball $\mathbb{B}^{n}:=\left\{z \in \mathbb{C}^{n}:\|z\|^{2}<1\right\}$

Classical domains in general

$$
\begin{gathered}
D^{\prime}(p, q)=\left\{Z \in M(p, q, \mathbb{C}): I-\bar{Z}^{t} Z>0\right\}, \quad p, q \geq 1 \\
D_{n}^{\prime \prime}(n, n)=\left\{Z \in D_{n, n}^{\prime}: Z^{t}=-Z\right\}, \quad n \geq 2 \\
D_{n}^{\prime \prime \prime}=\left\{Z \in D_{n, n}^{\prime}: Z^{t}=Z\right\}, \quad n \geq 3 \\
D_{n}^{\prime V}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\|z\|^{2}<2 ;\right. \\
\left.\|z\|^{2}<1+\left|\frac{1}{2} \sum_{i=1}^{n} z_{i}^{2}\right|^{2}\right\}, \quad n \geq 3
\end{gathered}
$$

Exceptional domains

$D^{V}, \operatorname{dim} 16$, type $E_{6} ; D^{V I}, \operatorname{dim} 27$, type E_{7}

The André-Oort Conjecture

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a special point (in which case $[\mathbb{Q}(\tau): \mathbb{Q}]=2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma}=\Omega / \Gamma$, and the André-Oort Conjecture ascertains that the Zariski closure of any set of special points on X_{Γ} is a finite union of Shimura subvarieties $X_{\Gamma}^{\prime} \hookrightarrow X_{\Gamma}$.

The André-Oort Conjecture

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a special point (in which case $[\mathbb{Q}(\tau): \mathbb{Q}]=2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma}=\Omega / \Gamma$, and the André-Oort Conjecture ascertains that the Zariski closure of any set of special points on X_{Γ} is a finite union of Shimura subvarieties $X_{\Gamma}^{\prime} \hookrightarrow X_{\Gamma}$.

The Pila-Zannier strategy

Pila-Zannier [PZ10] proposed strategy for finiteness and characterization problems concerning distinguished points in different arithmetic contexts (e.g. torsion points on Abelian varieties, special points on Shimura varieties).

The André-Oort Conjecture

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a special point (in which case $[\mathbb{Q}(\tau): \mathbb{Q}]=2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma}=\Omega / \Gamma$, and the André-Oort Conjecture ascertains that the Zariski closure of any set of special points on X_{Γ} is a finite union of Shimura subvarieties $X_{\Gamma^{\prime}}^{\prime} \hookrightarrow X_{\Gamma}$.

The Pila-Zannier strategy

Pila-Zannier [PZ10] proposed strategy for finiteness and characterization problems concerning distinguished points in different arithmetic contexts (e.g. torsion points on Abelian varieties, special points on Shimura varieties). For the André-Oort Conjecture on a Shimura variety $X_{\Gamma}=\Omega / \Gamma$, $\pi: \Omega \rightarrow X_{\Gamma}$, it breaks down into (a) an arithmetic component consisting of lower estimates on the size of Galois orbits of special points and

The André-Oort Conjecture

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a special point (in which case $[\mathbb{Q}(\tau): \mathbb{Q}]=2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma}=\Omega / \Gamma$, and the André-Oort Conjecture ascertains that the Zariski closure of any set of special points on X_{Γ} is a finite union of Shimura subvarieties $X_{\Gamma^{\prime}}^{\prime} \hookrightarrow X_{\Gamma}$.

The Pila-Zannier strategy

Pila-Zannier [PZ10] proposed strategy for finiteness and characterization problems concerning distinguished points in different arithmetic contexts (e.g. torsion points on Abelian varieties, special points on Shimura varieties). For the André-Oort Conjecture on a Shimura variety $X_{\Gamma}=\Omega / \Gamma$, $\pi: \Omega \rightarrow X_{\Gamma}$, it breaks down into (a) an arithmetic component consisting of lower estimates on the size of Galois orbits of special points and (b) a geometric component consisting of the characterization of Zariski closures of $\pi(S) \subset X_{\Gamma}$ for an algebraic subset $S \subset \Omega$.

Theorem of Gelfond-Schneider

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C} of order ρ,

Theorem of Gelfond-Schneider

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq 2$, and $D=\frac{\partial}{\partial z}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$.

Theorem of Gelfond-Schneider

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq 2$, and $D=\frac{\partial}{\partial z}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$. Let x_{1}, \ldots, x_{m} be distinct complex numbers outside the union of pole sets of f_{1}, \cdots, f_{N} such that $f_{i}\left(x_{\nu}\right) \in K$ for $1 \leq i \leq N, 1 \leq \nu \leq m$.

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq 2$, and $D=\frac{\partial}{\partial z}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$. Let x_{1}, \ldots, x_{m} be distinct complex numbers outside the union of pole sets of f_{1}, \cdots, f_{N} such that $f_{i}\left(x_{\nu}\right) \in K$ for $1 \leq i \leq N, 1 \leq \nu \leq m$. Then, $m \leq 20 \rho[K: \mathbb{Q}]$.

Theorem of Gelfond-Schneider

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq 2$, and $D=\frac{\partial}{\partial z}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$. Let x_{1}, \ldots, x_{m} be distinct complex numbers outside the union of pole sets of f_{1}, \cdots, f_{N} such that $f_{i}\left(x_{\nu}\right) \in K$ for $1 \leq i \leq N, 1 \leq \nu \leq m$. Then, $m \leq 20 \rho[K: \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$.

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq 2$, and $D=\frac{\partial}{\partial z}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$. Let x_{1}, \ldots, x_{m} be distinct complex numbers outside the union of pole sets of f_{1}, \cdots, f_{N} such that $f_{i}\left(x_{\nu}\right) \in K$ for $1 \leq i \leq N, 1 \leq \nu \leq m$. Then, $m \leq 20 \rho[K: \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$.
Proof. Assume e^{α} algebraic. Put $K=\mathbb{Q}\left(\alpha, e^{\alpha}\right) ; f(z)=z, g(z)=e^{z}$. Main Theorem applies but f, g take values in K for $x_{k}=k \alpha, k \in \mathbb{N}$, contradiction! \square

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq 2$, and $D=\frac{\partial}{\partial z}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$. Let x_{1}, \ldots, x_{m} be distinct complex numbers outside the union of pole sets of f_{1}, \cdots, f_{N} such that $f_{i}\left(x_{\nu}\right) \in K$ for $1 \leq i \leq N, 1 \leq \nu \leq m$. Then, $m \leq 20 \rho[K: \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$.
Proof. Assume e^{α} algebraic. Put $K=\mathbb{Q}\left(\alpha, e^{\alpha}\right) ; f(z)=z, g(z)=e^{z}$. Main Theorem applies but f, g take values in K for $x_{k}=k \alpha, k \in \mathbb{N}$, contradiction! \square Hence, $e=e^{1} \notin \overline{\mathbb{Q}} ; e^{2 \pi \imath}=1 \in \overline{\mathbb{Q}} \Rightarrow \pi \notin \overline{\mathbb{Q}}$.

Theorem of Gelfond-Schneider

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq 2$, and $D=\frac{\partial}{\partial z}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$. Let x_{1}, \ldots, x_{m} be distinct complex numbers outside the union of pole sets of f_{1}, \cdots, f_{N} such that $f_{i}\left(x_{\nu}\right) \in K$ for $1 \leq i \leq N, 1 \leq \nu \leq m$. Then, $m \leq 20 \rho[K: \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$.
Proof. Assume e^{α} algebraic. Put $K=\mathbb{Q}\left(\alpha, e^{\alpha}\right) ; f(z)=z, g(z)=e^{z}$. Main Theorem applies but f, g take values in K for $x_{k}=k \alpha, k \in \mathbb{N}$, contradiction! \square Hence, $e=e^{1} \notin \overline{\mathbb{Q}} ; e^{2 \pi \imath}=1 \in \overline{\mathbb{Q}} \Rightarrow \pi \notin \overline{\mathbb{Q}}$.

Gelfond-Schneider (1934)

Corollary Let $\alpha, \beta \in \overline{\mathbb{Q}}, \alpha \neq 0,1$ and $\beta \notin \mathbb{Q}$. Then, $\alpha^{\beta} \notin \overline{\mathbb{Q}}$.

Theorem of Gelfond-Schneider

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq 2$, and $D=\frac{\partial}{\partial z}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$. Let x_{1}, \ldots, x_{m} be distinct complex numbers outside the union of pole sets of f_{1}, \cdots, f_{N} such that $f_{i}\left(x_{\nu}\right) \in K$ for $1 \leq i \leq N, 1 \leq \nu \leq m$. Then, $m \leq 20 \rho[K: \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$.
Proof. Assume e^{α} algebraic. Put $K=\mathbb{Q}\left(\alpha, e^{\alpha}\right) ; f(z)=z, g(z)=e^{z}$. Main Theorem applies but f, g take values in K for $x_{k}=k \alpha, k \in \mathbb{N}$, contradiction! \square Hence, $e=e^{1} \notin \overline{\mathbb{Q}} ; e^{2 \pi \imath}=1 \in \overline{\mathbb{Q}} \Rightarrow \pi \notin \overline{\mathbb{Q}}$.

Gelfond-Schneider (1934)

Corollary Let $\alpha, \beta \in \overline{\mathbb{Q}}, \alpha \neq 0,1$ and $\beta \notin \mathbb{Q}$. Then, $\alpha^{\beta} \notin \overline{\mathbb{Q}}$.
Proof. Assume $\alpha^{\beta} \in \overline{\mathbb{Q}}$. Put $K=\mathbb{Q}\left(\alpha, \beta, \alpha^{\beta}\right) ; f(z)=e^{z}, g(z)=e^{\beta z}$;

Lindemann-Weierstrass Theorem and Schanuel Conjecture

Lindemann-Weiersrstrass Theorem (1882)

Suppose $\alpha_{1}, \cdots, \alpha_{n} \in \overline{\mathbb{Q}}$ are \mathbb{Q}-linearly independent. Then, $e^{\alpha_{1}}, \cdots, e^{\alpha_{n}}$ are algebraically independent.

Lindemann-Weierstrass Theorem and Schanuel Conjecture

Lindemann-Weiersrstrass Theorem (1882)

Suppose $\alpha_{1}, \cdots, \alpha_{n} \in \overline{\mathbb{Q}}$ are \mathbb{Q}-linearly independent. Then, $e^{\alpha_{1}}, \cdots, e^{\alpha_{n}}$ are algebraically independent.

Schanuel Conjecture (1960s)

Suppose $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$ are \mathbb{Q}-linearly independent. Then, trans.deg. $\mathbb{Q} \mathbb{Q}\left(\alpha_{1}, \cdots, \alpha_{n} ; e^{\alpha_{1}}, \cdots, e^{\alpha_{n}}\right) \geq n$.

LWT answers the special case of SC where $\alpha_{1}, \cdots, \alpha_{n} \in \overline{\mathbb{Q}}$

Lindemann-Weierstrass Theorem and Schanuel Conjecture

Lindemann-Weiersrstrass Theorem (1882)

Suppose $\alpha_{1}, \cdots, \alpha_{n} \in \overline{\mathbb{Q}}$ are \mathbb{Q}-linearly independent. Then, $e^{\alpha_{1}}, \cdots, e^{\alpha_{n}}$ are algebraically independent.

Schanuel Conjecture (1960s)

Suppose $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$ are \mathbb{Q}-linearly independent. Then, trans.deg. $\mathbb{Q} \mathbb{Q}\left(\alpha_{1}, \cdots, \alpha_{n} ; e^{\alpha_{1}}, \cdots, e^{\alpha_{n}}\right) \geq n$.
LWT answers the special case of SC where $\alpha_{1}, \cdots, \alpha_{n} \in \overline{\mathbb{Q}}$

Baker's Theorem (1975)

Suppose $x_{1}, \cdots, x_{n} \in \overline{\mathbb{Q}}$, and $\log \left(x_{1}\right), \cdots \log \left(x_{n}\right)$ are linearly independent over \mathbb{Q}. Then $1, \log \left(x_{1}\right), \cdots, \log \left(x_{n}\right)$ are linearly independent over $\overline{\mathbb{Q}}$

Algebraic Diff. Eqns. in Several Complex Variables

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)
Theorem Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C}^{d} of order ρ,

Algebraic Diff. Eqns. in Several Complex Variables

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)
Theorem Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C}^{d} of order ρ, trans.deg. $K_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq d+1$, and $D=\frac{\partial}{\partial z_{\alpha}}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$ for $1 \leq \alpha \leq d$.

Algebraic Diff. Eqns. in Several Complex Variables

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)
Theorem Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C}^{d} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq d+1$, and $D=\frac{\partial}{\partial z_{\alpha}}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$ for $1 \leq \alpha \leq d$. Then, the set of $\zeta \in \mathbb{C}^{d}$ lying outside poles of f_{1}, \cdots, f_{N} and obeying $f(\zeta) \in K^{N}$ must lie in an alg. hypersurface of degree $\leq d(d+1) \rho[K: \mathbb{Q}]+2 d$.

Algebraic Diff. Eqns. in Several Complex Variables

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)
Theorem Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C}^{d} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq d+1$, and $D=\frac{\partial}{\partial z_{\alpha}}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$ for $1 \leq \alpha \leq d$. Then, the set of $\zeta \in \mathbb{C}^{d}$ lying outside poles of f_{1}, \cdots, f_{N} and obeying $f(\zeta) \in K^{N}$ must lie in an alg. hypersurface of degree $\leq d(d+1) \rho[K: \mathbb{Q}]+2 d$.

Closed positive (p, p)-currents (Lelong 1964)
A \mathscr{C}^{∞} positive $(1,1)$-form ω means $\imath \sum \omega_{i \bar{j}}(z) d z^{i} \wedge d \overline{z^{j}},\left(\omega_{i \bar{j}}(z)\right)>0$.

Algebraic Diff. Eqns. in Several Complex Variables

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)
Theorem Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C}^{d} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq d+1$, and $D=\frac{\partial}{\partial z_{\alpha}}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$ for $1 \leq \alpha \leq d$. Then, the set of $\zeta \in \mathbb{C}^{d}$ lying outside poles of f_{1}, \cdots, f_{N} and obeying $f(\zeta) \in K^{N}$ must lie in an alg. hypersurface of degree $\leq d(d+1) \rho[K: \mathbb{Q}]+2 d$.

Closed positive (p, p)-currents (Lelong 1964)

A \mathscr{C}^{∞} positive $(1,1)$-form ω means $i \sum \omega_{i \bar{j}}(z) d z^{i} \wedge d \overline{z^{j}},\left(\omega_{i \bar{j}}(z)\right)>0$. A (p, p)-current T is positive $\Leftrightarrow T \wedge \omega_{1} \wedge \cdots \wedge \omega_{n-p} \geq 0$ as a measure. $\left(\omega_{i}\right.$ like ω).

Algebraic Diff. Eqns. in Several Complex Variables

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)

Theorem Let K be a number field, f_{1}, \cdots, f_{N} be meromorphic functions on \mathbb{C}^{d} of order ρ, trans.deg. ${ }_{K} K\left(f_{1}, \cdots, f_{N}\right) \geq d+1$, and $D=\frac{\partial}{\partial z_{\alpha}}: K\left(f_{1}, \cdots, f_{N}\right) \hookrightarrow K\left(f_{1}, \cdots, f_{N}\right)$ for $1 \leq \alpha \leq d$. Then, the set of $\zeta \in \mathbb{C}^{d}$ lying outside poles of f_{1}, \cdots, f_{N} and obeying $f(\zeta) \in K^{N}$ must lie in an alg. hypersurface of degree $\leq d(d+1) \rho[K: \mathbb{Q}]+2 d$.

Closed positive (p, p)-currents (Lelong 1964)

A \mathscr{C}^{∞} positive $(1,1)$-form ω means $i \sum \omega_{i \bar{j}}(z) d z^{i} \wedge d \overline{z^{j}},\left(\omega_{i j}(z)\right)>0$. A (p, p)-current T is positive $\Leftrightarrow T \wedge \omega_{1} \wedge \cdots \wedge \omega_{n-p} \geq 0$ as a measure. $\left(\omega_{i}\right.$ like ω). A $\left(d\right.$-)closed positive $\mathscr{C}^{\infty}(1,1)$-form is locally $T=\imath \partial \bar{\partial} \varphi$ where $\varphi \in \mathscr{C}^{\infty}$ and $\left(\frac{\partial^{2} \varphi}{\partial z_{i} \partial \bar{z}_{j}}\right)>0$. Locally a closed positive (1,1)-current $T=\imath \partial \bar{\partial} \varphi$ where φ is weakly psh.

Techniques from complex geometry

Monotonicity of weighted mass of T over concentric Euclidean balls

Assume T defined on $\mathbb{B}^{n}(0 ; R)$. For $0<r<R$ denote by $m(T ; 0 ; r)$ the integral of $T \wedge\left(\imath \partial \bar{\partial}\|z\|^{2}\right)^{n-p}$ over $\mathbb{B}^{n}(0 ; r) ; \nu(T, 0 ; r):=\frac{m(T, 0 ; r)}{\operatorname{Vol}\left(\mathbb{B}^{n-p}(0 ; R)\right)}$.

Techniques from complex geometry

Monotonicity of weighted mass of T over concentric Euclidean balls

Assume T defined on $\mathbb{B}^{n}(0 ; R)$. For $0<r<R$ denote by $m(T ; 0 ; r)$ the integral of $T \wedge\left(\imath \partial \bar{\partial}\|z\|^{2}\right)^{n-p}$ over $\mathbb{B}^{n}(0 ; r) ; \nu(T, 0 ; r):=\frac{m(T, 0 ; r)}{\operatorname{Vol}\left(\mathbb{B}^{n-p}(0 ; R)\right)}$. Lelong proved that $\nu(T ; 0 ; r)$ is decreasing as $r \rightarrow 0$; the limit as $r \rightarrow 0$ is now called the Lelong number $\nu(T ; 0)$ at 0 . E.g., $T:=[S]$, the integral current of a pure $(n-p)$-dimensional complex analytic subvariety $S \subset \mathbb{B}^{n}(0 ; R)$, where $\nu([S] ; 0)=\operatorname{mult}_{0}(S) \in \mathbb{N}$ is the multiplicity of S at 0 .

Recovering complex analytic subvarieties from density conditions

Theorem (Siu [Invent. Math. (1970)]) Let X be a complex manifold, $\operatorname{dim}_{\mathbb{C}}(X)=: n, 1 \leq p<n$, and T be a closed positive (p, p)-current on X. Let $c>0$. Put $E_{c}(T):=\{x \in X: \nu(T ; x) \geq c\}$. Then, $E_{c}(T) \subset X$ is a complex analytic subvariety where each irreducible subvariety is of complex codimension $\geq p$.

The Ax-Lindemann Theorem on $X_{\Gamma}=\Omega / \Gamma$

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

The Ax-Lindemann Theorem on $X_{\Gamma}=\Omega / \Gamma$

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma}:=\Omega / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ for the uniformization map.

The Ax-Lindemann Theorem on $X_{\Gamma}=\Omega / \Gamma$

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma}:=\Omega / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z}=\overline{\pi(Z)}^{\mathscr{Z}}{ }^{2} \subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ}.

The Ax-Lindemann Theorem on $X_{\Gamma}=\Omega / \Gamma$

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma}:=\Omega / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z}=\overline{\pi(Z)}^{\mathscr{Z}}$ ar $\subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ}. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

The Ax-Lindemann Theorem on $X_{\Gamma}=\Omega / \Gamma$

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma}:=\Omega / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z}=\overline{\pi(Z)}^{\mathscr{Z}}$ ar $\subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ}. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Key arguments are from model theory (counting theorem Pila-Wilkie) and complex differential geometry (volume estimates of Hwang-To).

The Ax-Lindemann Theorem on $X_{\Gamma}=\Omega / \Gamma$

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma}:=\Omega / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z}=\overline{\pi(Z)}^{\mathscr{Z}}$ ar $\subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ}. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Key arguments are from model theory (counting theorem Pila-Wilkie) and complex differential geometry (volume estimates of Hwang-To).

Using the above Tsimerman [Ts18] has proven the André-Oort Conjecture for Siegel modular varieties $\mathcal{A}_{g}=\mathcal{H}_{g} / \mathrm{Sp}(g ; \mathbb{Z})$. Recently, Pila-ShankarTsimerman has announced a solution of the full André-Oort Conjecture.

Counting points on definable sets

For a rational point $x=\frac{p}{q} ; p, q \in \mathbb{Z}, q \neq 0$, where $|p|$ and $|q|$ are coprime, we define the height $H(x)=\max (|p|,|q|)$. For $\left.x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Q}^{n}\right)$ we define $H(x)=\max \left(H\left(x_{1}\right), \cdots, H\left(x_{n}\right)\right)$.

Counting points on definable sets

For a rational point $x=\frac{p}{q} ; p, q \in \mathbb{Z}, q \neq 0$, where $|p|$ and $|q|$ are coprime, we define the height $H(x)=\max (|p|,|q|)$. For $\left.x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Q}^{n}\right)$ we define $H(x)=\max \left(H\left(x_{1}\right), \cdots, H\left(x_{n}\right)\right)$. For $Z \subset \mathbb{R}^{n}$, and for $T>0$ we define the counting function $N(Z, T):=\left|\left\{x \in Z \cap \mathbb{Q}^{n}: H(x) \leq T\right\}\right|$.

Counting points on definable sets

For a rational point $x=\frac{p}{q} ; p, q \in \mathbb{Z}, q \neq 0$, where $|p|$ and $|q|$ are coprime, we define the height $H(x)=\max (|p|,|q|)$. For $\left.x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Q}^{n}\right)$ we define $H(x)=\max \left(H\left(x_{1}\right), \cdots, H\left(x_{n}\right)\right)$. For $Z \subset \mathbb{R}^{n}$, and for $T>0$ we define the counting function $N(Z, T):=\left|\left\{x \in Z \cap \mathbb{Q}^{n}: H(x) \leq T\right\}\right|$.

Model Theory: o-minimal structures on \mathbb{R}^{n}

A structure \mathscr{S} on $\left\{\mathbb{R}^{n}: n \in \mathbb{N}\right\}$ consists of Boolean algebras of subsets $S_{n} \subset 2^{\mathbb{R}^{n}}$ closed under taking Cartesian products and coordinate projections, s.t. $\operatorname{Diag}(\mathbb{R} \times \mathbb{R}) \in S_{2}$, and, $\operatorname{Graph}(+), \operatorname{Graph}(\times) \in S_{3}$.

Counting points on definable sets

For a rational point $x=\frac{p}{q} ; p, q \in \mathbb{Z}, q \neq 0$, where $|p|$ and $|q|$ are coprime, we define the height $H(x)=\max (|p|,|q|)$. For $\left.x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Q}^{n}\right)$ we define $H(x)=\max \left(H\left(x_{1}\right), \cdots, H\left(x_{n}\right)\right)$. For $Z \subset \mathbb{R}^{n}$, and for $T>0$ we define the counting function $N(Z, T):=\left|\left\{x \in Z \cap \mathbb{Q}^{n}: H(x) \leq T\right\}\right|$.

Model Theory: o-minimal structures on \mathbb{R}^{n}

A structure \mathscr{S} on $\left\{\mathbb{R}^{n}: n \in \mathbb{N}\right\}$ consists of Boolean algebras of subsets $S_{n} \subset 2^{\mathbb{R}^{n}}$ closed under taking Cartesian products and coordinate projections, s.t. $\operatorname{Diag}(\mathbb{R} \times \mathbb{R}) \in S_{2}$, and, $\operatorname{Graph}(+), \operatorname{Graph}(\times) \in S_{3}$. \mathscr{S} is called o-minimal if S_{1} consists of finite unions of intervals and points.

Counting points on definable sets

For a rational point $x=\frac{p}{q} ; p, q \in \mathbb{Z}, q \neq 0$, where $|p|$ and $|q|$ are coprime, we define the height $H(x)=\max (|p|,|q|)$. For $\left.x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Q}^{n}\right)$ we define $H(x)=\max \left(H\left(x_{1}\right), \cdots, H\left(x_{n}\right)\right)$. For $Z \subset \mathbb{R}^{n}$, and for $T>0$ we define the counting function $N(Z, T):=\left|\left\{x \in Z \cap \mathbb{Q}^{n}: H(x) \leq T\right\}\right|$.

Model Theory: o-minimal structures on \mathbb{R}^{n}

A structure \mathscr{S} on $\left\{\mathbb{R}^{n}: n \in \mathbb{N}\right\}$ consists of Boolean algebras of subsets $S_{n} \subset 2^{\mathbb{R}^{n}}$ closed under taking Cartesian products and coordinate projections, s.t. $\operatorname{Diag}(\mathbb{R} \times \mathbb{R}) \in S_{2}$, and, $\operatorname{Graph}(+), \operatorname{Graph}(\times) \in S_{3}$. \mathscr{S} is called o-minimal if S_{1} consists of finite unions of intervals and points. $\mathbb{R}_{\text {an,exp }}$ is the minimal \mathscr{S} including subanalytic sets and Graph(exp), and it is o-minimal (Dries-Miller 1994).

Counting points on definable sets

For a rational point $x=\frac{p}{q} ; p, q \in \mathbb{Z}, q \neq 0$, where $|p|$ and $|q|$ are coprime, we define the height $H(x)=\max (|p|,|q|)$. For $\left.x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Q}^{n}\right)$ we define $H(x)=\max \left(H\left(x_{1}\right), \cdots, H\left(x_{n}\right)\right)$. For $Z \subset \mathbb{R}^{n}$, and for $T>0$ we define the counting function $N(Z, T):=\left|\left\{x \in Z \cap \mathbb{Q}^{n}: H(x) \leq T\right\}\right|$.

Model Theory: o-minimal structures on \mathbb{R}^{n}

A structure \mathscr{S} on $\left\{\mathbb{R}^{n}: n \in \mathbb{N}\right\}$ consists of Boolean algebras of subsets $S_{n} \subset 2^{\mathbb{R}^{n}}$ closed under taking Cartesian products and coordinate projections, s.t. $\operatorname{Diag}(\mathbb{R} \times \mathbb{R}) \in S_{2}$, and, $\operatorname{Graph}(+), \operatorname{Graph}(\times) \in S_{3}$. \mathscr{S} is called o-minimal if S_{1} consists of finite unions of intervals and points. $\mathbb{R}_{\text {an,exp }}$ is the minimal \mathscr{S} including subanalytic sets and Graph (exp), and it is o-minimal (Dries-Miller 1994). Any member (called definable set) in an o-minimal \mathscr{S} has finitely many connected components.

Theorem (Pila-Wilkie, Duke J. 2006)

Let $Z \subset \mathbb{R}^{n}$ be a definable subset in a given o-minimal structure. Then, $N\left(Z-Z^{\text {alg }}, T\right)=T^{o(1)}$, i.e., $\left|Z-Z^{\text {alg }}\right|$ grows subpolynomially.

A generalized Lelong monotonicity formula

Proposition

Let φ be an unbounded \mathscr{C}^{∞} strictly psh exhaustion fct on a Stein manifold X. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be strictly increasing s.t. $\psi:=F \circ \varphi$ is weakly psh. Let S be a closed positive (p, p)-current on $X, 0<p<\operatorname{dim}(X)$. Then,

$$
h_{S, \varphi}(T):=F^{\prime}(T)^{n-p} \int_{\{\varphi<T\}} S \wedge(\sqrt{-1} \partial \bar{\partial} \varphi)^{n-p}
$$

is a monotonically increasing nonnegative function in T.

A generalized Lelong monotonicity formula

Proposition

Let φ be an unbounded \mathscr{C}^{∞} strictly psh exhaustion fct on a Stein manifold X. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be strictly increasing s.t. $\psi:=F \circ \varphi$ is weakly psh. Let S be a closed positive (p, p)-current on $X, 0<p<\operatorname{dim}(X)$. Then,

$$
h_{S, \varphi}(T):=F^{\prime}(T)^{n-p} \int_{\{\varphi<T\}} S \wedge(\sqrt{-1} \partial \bar{\partial} \varphi)^{n-p}
$$

is a monotonically increasing nonnegative function in T.

Corollary (rough form of Theorem (Hwang-To 2002))

Let $\left(\Omega, d s_{\Omega}^{2}\right)$ be a BSD equipped with its Bergman metric, and denote by $\mathbb{B}\left(x_{0} ; r\right)$ its geodesic ball of radius r centered at $x_{0} \in \Omega$. Let $V \subset \Omega$ be an irr. complex analytic subvariety, $\operatorname{dim}_{\mathbb{C}} V>0$, passing through x_{0}. Then, $\exists \lambda=\lambda_{\Omega}$ and $C=C_{\Omega}>0$ such that Volume $\left(\mathbb{B}\left(x_{0} ; r\right)\right) \geq C e^{\lambda r}$.

Geometric applications of Lelong formulas

(1) Lelong's original formula was for closed positive (p, p)-currents on \mathbb{C}^{n}, in which one considers the psh function $\varphi=\|z\|^{2}$. In this case $\psi:=\log \varphi=\log \|z\|^{2}$ is weakly psh, $F(T)=\log (T)$.

Geometric applications of Lelong formulas

(1) Lelong's original formula was for closed positive (p, p)-currents on \mathbb{C}^{n}, in which one considers the psh function $\varphi=\|z\|^{2}$. In this case $\psi:=\log \varphi=\log \|z\|^{2}$ is weakly psh, $F(T)=\log (T)$.
(2) In the case \mathbb{B}^{n} with potential function $\varphi=-(n+1) \log \left(1-\|z\|^{2}\right)$ for the Bergman metric $d(0 ; z) \sim \varphi(z), \exists c_{2}>c_{1}>0$ such that $\left\{\varphi<c_{1} r\right\} \subset \mathbb{B}(0 ; r) \subset\left\{\varphi<c_{2} r\right\}$. Take $F(T)=-e^{-\alpha T}$. We can check that $\exists \alpha>0$ such that for $\psi:=F \circ \varphi=-e^{-\alpha \varphi}, \sqrt{-1} \partial \bar{\partial} \psi \geq 0$.

Geometric applications of Lelong formulas

(1) Lelong's original formula was for closed positive (p, p)-currents on \mathbb{C}^{n}, in which one considers the psh function $\varphi=\|z\|^{2}$. In this case $\psi:=\log \varphi=\log \|z\|^{2}$ is weakly psh, $F(T)=\log (T)$.
(2) In the case \mathbb{B}^{n} with potential function $\varphi=-(n+1) \log \left(1-\|z\|^{2}\right)$ for the Bergman metric $d(0 ; z) \sim \varphi(z), \exists c_{2}>c_{1}>0$ such that $\left\{\varphi<c_{1} r\right\} \subset \mathbb{B}(0 ; r) \subset\left\{\varphi<c_{2} r\right\}$. Take $F(T)=-e^{-\alpha T}$. We can check that $\exists \alpha>0$ such that for $\psi:=F \circ \varphi=-e^{-\alpha \varphi}, \sqrt{-1} \partial \bar{\partial} \psi \geq 0$. For this we check $\sqrt{-1} \partial \bar{\partial} \varphi \geq \alpha \partial \varphi \wedge \bar{\partial} \varphi$.

Geometric applications of Lelong formulas

(1) Lelong's original formula was for closed positive (p, p)-currents on \mathbb{C}^{n}, in which one considers the psh function $\varphi=\|z\|^{2}$. In this case $\psi:=\log \varphi=\log \|z\|^{2}$ is weakly psh, $F(T)=\log (T)$.
(2) In the case \mathbb{B}^{n} with potential function $\varphi=-(n+1) \log \left(1-\|z\|^{2}\right)$ for the Bergman metric $d(0 ; z) \sim \varphi(z), \exists c_{2}>c_{1}>0$ such that $\left\{\varphi<c_{1} r\right\} \subset \mathbb{B}(0 ; r) \subset\left\{\varphi<c_{2} r\right\}$. Take $F(T)=-e^{-\alpha T}$. We can check that $\exists \alpha>0$ such that for $\psi:=F \circ \varphi=-e^{-\alpha \varphi}, \sqrt{-1} \partial \bar{\partial} \psi \geq 0$. For this we check $\sqrt{-1} \partial \bar{\partial} \varphi \geq \alpha \partial \varphi \wedge \bar{\partial} \varphi$. For a BSD Ω, one uses $\varphi(z)=\log K_{\Omega}(z, z), K_{\Omega}=$ Bergman Kernal of Ω.

Ax-Lindemann Theorem for Rank-1 Lattices

Theorem (Mok [Mo19, Compositio Math.])

Let $n \geq 2$ and $\Gamma \subset \operatorname{Aut}\left(\mathbb{B}^{n}\right)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma}:=\mathbb{B}^{n} / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z}=\overline{\pi(Z)}^{\mathscr{Z} \text { ar }} \subset X_{\Gamma}$ be the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ}. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Ax-Lindemann Theorem for Rank-1 Lattices

Theorem (Mok [Mo19, Compositio Math.])

Let $n \geq 2$ and $\Gamma \subset \operatorname{Aut}\left(\mathbb{B}^{n}\right)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma}:=\mathbb{B}^{n} / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z}=\overline{\pi(Z)}^{\mathscr{Z} \text { ar }} \subset X_{\Gamma}$ be the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ}. Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.
(a) We have $\mathbb{B}^{n} \subset \mathbb{P}^{n}, Z$ as an open subset of an algebraic $\widehat{Z} \subset \mathbb{P}^{n}$

Consider [\widehat{Z}] as a member of an irreducible component \mathcal{K} of the Chow scheme $\operatorname{Chow}\left(\mathbb{P}^{n}\right)$, with associated fiber bundle $\mu: \mathcal{U} \rightarrow \mathbb{P}^{n}$. Restrict \mathcal{U} to \mathbb{B}^{n} and take quotients wrt Γ to get $\mu_{\Gamma}: U_{\Gamma} \rightarrow X_{\Gamma}$. Prove that \mathcal{U}_{Γ} is algebraic by means of L^{2}-estimates of $\bar{\partial}$.

AL Theorem for Rank-1 Lattices (cont.)

(b) Let $\widetilde{\mathscr{Z}}$ be an irreducible component of $\pi_{\Gamma}^{-1}(\mathscr{Z})$. Then, at a good point $b \in \partial \widetilde{\mathscr{Z}}, \widetilde{\mathscr{Z}}$ extends across b as the union of an analytic family of algebraic subvarieties of \mathbb{P}^{n}. Let \mathscr{D} be a germ of complex submanifold at b grafted to extend $\widetilde{\mathscr{Z}}$ analytically across b.

AL Theorem for Rank-1 Lattices (cont.)

(b) Let $\widetilde{\mathscr{Z}}$ be an irreducible component of $\pi_{\Gamma}^{-1}(\mathscr{Z})$. Then, at a good point $b \in \partial \widetilde{\mathscr{Z}}, \widetilde{\mathscr{Z}}$ extends across b as the union of an analytic family of algebraic subvarieties of \mathbb{P}^{n}. Let \mathscr{D} be a germ of complex submanifold at b grafted to extend $\widetilde{\mathscr{Z}}$ analytically across b.
(c) $\mathscr{D} \cap \mathbb{B}^{n}$ is a local strictly peudoconvex manifold with smooth boundary, and by Klembeck [KI87] $\mathscr{D} \cap \mathbb{B}^{n}$ is asymptotically of constant holomorphic sectional curvature -2 , hence asymptotically totally geodesic.

AL Theorem for Rank-1 Lattices (cont.)

(b) Let $\widetilde{\mathscr{Z}}$ be an irreducible component of $\pi_{\Gamma}^{-1}(\mathscr{Z})$. Then, at a good point $b \in \partial \widetilde{\mathscr{Z}}, \widetilde{\mathscr{Z}}$ extends across b as the union of an analytic family of algebraic subvarieties of \mathbb{P}^{n}. Let \mathscr{D} be a germ of complex submanifold at b grafted to extend $\widetilde{\mathscr{Z}}$ analytically across b.
(c) $\mathscr{D} \cap \mathbb{B}^{n}$ is a local strictly peudoconvex manifold with smooth boundary, and by Klembeck [KI87] $\mathscr{D} \cap \mathbb{B}^{n}$ is asymptotically of constant holomorphic sectional curvature -2 , hence asymptotically totally geodesic.
(d) By rescaling using elements $\gamma \in \pi_{1}(\mathscr{Z}) \hookrightarrow \pi_{1}\left(X_{\Gamma}\right) \cong \Gamma$, it follows that Π is of constant holomorphic sectional curvature -2 , hence totally geodesic.

Compactification Theorem by L^{2}-estimates of $\bar{\partial}$

Theorem (Mok-Zhong [MZ89, Ann. Math.])
Let (X, g) be a complete Kähler manifold. Assume that $\operatorname{Vol}(X, g)<\infty$, $\|$ Sectional Curvature $(X, g) \|<\infty$, and that X has finite topology.

Compactification Theorem by L^{2}-estimates of $\bar{\partial}$

Theorem (Mok-Zhong [MZ89, Ann. Math.])
Let (X, g) be a complete Kähler manifold. Assume that $\operatorname{Vol}(X, g)<\infty$, $\|$ Sectional Curvature $(X, g) \|<\infty$, and that X has finite topology. Suppose there exists a Hermitian holomorphic line bundle (E, h) of pinched positive curvature.

Compactification Theorem by L^{2}-estimates of $\bar{\partial}$

Theorem (Mok-Zhong [MZ89, Ann. Math.])

Let (X, g) be a complete Kähler manifold. Assume that $\operatorname{Vol}(X, g)<\infty$, $\|$ Sectional Curvature $(X, g) \|<\infty$, and that X has finite topology. Suppose there exists a Hermitian holomorphic line bundle (E, h) of pinched positive curvature. For $k>0$, denote by $\mathcal{N}\left(X, E^{k}\right)$ the space of holomorphic sections $s \in \Gamma\left(X, E^{k}\right)$ of the Nevanlinna class, i.e., s satisfies $\int_{X} \max \left(\log \|s\|_{h^{k}}, 0\right)<\infty$.

Compactification Theorem by L^{2}-estimates of $\bar{\partial}$

Theorem (Mok-Zhong [MZ89, Ann. Math.])

Let (X, g) be a complete Kähler manifold. Assume that $\operatorname{Vol}(X, g)<\infty$, $\|$ Sectional Curvature $(X, g) \|<\infty$, and that X has finite topology. Suppose there exists a Hermitian holomorphic line bundle (E, h) of pinched positive curvature. For $k>0$, denote by $\mathcal{N}\left(X, E^{k}\right)$ the space of holomorphic sections $s \in \Gamma\left(X, E^{k}\right)$ of the Nevanlinna class, i.e., s satisfies $\int_{X} \max \left(\log \|s\|_{h^{k}}, 0\right)<\infty$. Then, $\operatorname{dim}\left(\mathcal{N}\left(X, E^{k}\right)\right)<\infty$ for all $k \geq 0$. Moreover, there exists some positive integer k such that $\mathcal{N}\left(X, E^{k}\right)$ has no base points and it embeds X into $\mathbb{P}\left(\mathcal{N}\left(X, E^{k}\right)^{*}\right)$ realizing X as a quasi-projective manifold.

Earlier Ax-Schanuel-type results

Ax-Schanuel Theorem

Theorem (Ax71, Annals) Let $f_{1}, \cdots, f_{n} \in \mathbb{C}\left[\left[z_{1}, \cdots, z_{m}\right]\right]$ be \mathbb{Q}-linearly independent formal power series with no constant terms.

Earlier Ax-Schanuel-type results

Ax-Schanuel Theorem

Theorem (Ax71, Annals) Let $f_{1}, \cdots, f_{n} \in \mathbb{C}\left[\left[z_{1}, \cdots, z_{m}\right]\right]$ be \mathbb{Q}-linearly independent formal power series with no constant terms. Then, trans.deg. ${ }_{\mathbb{C}} \mathbb{C}\left(f_{1}, \cdots, f_{n} ; e^{2 \pi \imath f_{1}}, \cdots, e^{2 \pi \imath f_{n}}\right) \geq n+\operatorname{rank}\left(\frac{\partial f_{i}}{\partial z_{j}}\right)$.

Earlier Ax-Schanuel-type results

Ax-Schanuel Theorem

Theorem (Ax71, Annals) Let $f_{1}, \cdots, f_{n} \in \mathbb{C}\left[\left[z_{1}, \cdots, z_{m}\right]\right]$ be \mathbb{Q}-linearly independent formal power series with no constant terms. Then, trans.deg. $\mathbb{C}^{\mathbb{C}}\left(f_{1}, \cdots, f_{n} ; e^{2 \pi \imath f_{1}}, \cdots, e^{2 \pi \imath f_{n}}\right) \geq n+\operatorname{rank}\left(\frac{\partial f_{i}}{\partial z_{j}}\right)$.
(1) The case of formal power series is reducible to that of convergent power series, by Seidenberg, hence to considering the restriction of functions to a germ of complex submanifold $(V ; 0) \subset\left(\mathbb{C}^{m} ; 0\right)$.

Earlier Ax-Schanuel-type results

Ax-Schanuel Theorem

Theorem (Ax71, Annals) Let $f_{1}, \cdots, f_{n} \in \mathbb{C}\left[\left[z_{1}, \cdots, z_{m}\right]\right]$ be \mathbb{Q}-linearly independent formal power series with no constant terms. Then,

$$
\text { trans.deg. } \mathbb{C}^{\mathbb{C}}\left(f_{1}, \cdots, f_{n} ; e^{2 \pi \imath f_{1}}, \cdots, e^{2 \pi \imath f_{n}}\right) \geq n+\operatorname{rank}\left(\frac{\partial f_{i}}{\partial z_{j}}\right)
$$

(1) The case of formal power series is reducible to that of convergent power series, by Seidenberg, hence to considering the restriction of functions to a germ of complex submanifold $(V ; 0) \subset\left(\mathbb{C}^{m} ; 0\right)$.
(2) Let $U \subset \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$ be the graph of V above under the exponential map. The hypothesis implies that the projection of U to $\left(\mathbb{C}^{*}\right)^{n}$ is not contained in any proper algebraic subgroup.

Earlier Ax-Schanuel-type results

Ax-Schanuel Theorem

Theorem (Ax71, Annals) Let $f_{1}, \cdots, f_{n} \in \mathbb{C}\left[\left[z_{1}, \cdots, z_{m}\right]\right]$ be \mathbb{Q}-linearly independent formal power series with no constant terms. Then,

$$
\text { trans.deg. }{ }_{\mathbb{C}} \mathbb{C}\left(f_{1}, \cdots, f_{n} ; e^{2 \pi \imath f_{1}}, \cdots, e^{2 \pi \imath f_{n}}\right) \geq n+\operatorname{rank}\left(\frac{\partial f_{i}}{\partial z_{j}}\right)
$$

(1) The case of formal power series is reducible to that of convergent power series, by Seidenberg, hence to considering the restriction of functions to a germ of complex submanifold $(V ; 0) \subset\left(\mathbb{C}^{m} ; 0\right)$.
(2) Let $U \subset \mathbb{C}^{n} \times\left(\mathbb{C}^{*}\right)^{n}$ be the graph of V above under the exponential map. The hypothesis implies that the projection of U to $\left(\mathbb{C}^{*}\right)^{n}$ is not contained in any proper algebraic subgroup.

Ax-Schanuel for the j-function

Pila-Tsimerman [PT16] proved an analogue of Ax-Schanuel for the Cartesian product \mathcal{H}^{n} of upper half-planes, replacing the exponential function by $j: \mathcal{H} \rightarrow \mathbb{C}$, thus considering $\mathbb{C}\left(f_{1}, \cdots, f_{n} ; j \circ f_{1}, \cdots, j \circ f_{n}\right)$. They also proved an analogue involving at the same time j^{\prime} and $j^{\prime \prime}$.

Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic lattice, and write $X_{\Gamma}:=\Omega / \Gamma$, as a quasi-projective variety. Let $W \subset \Omega \times X_{\Gamma}$ be an algebraic subvariety. Let $D \subset \Omega \times X_{\Gamma}$ be the graph of the uniformization map $\pi_{\Gamma}: \Omega \rightarrow X_{\Gamma}$, and U be an irreducible component of $W \cap D$ whose dimension is larger than expected,

Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic lattice, and write $X_{\Gamma}:=\Omega / \Gamma$, as a quasi-projective variety. Let $W \subset \Omega \times X_{\Gamma}$ be an algebraic subvariety. Let $D \subset \Omega \times X_{\Gamma}$ be the graph of the uniformization map $\pi_{\Gamma}: \Omega \rightarrow X_{\Gamma}$, and U be an irreducible component of $W \cap D$ whose dimension is larger than expected, i.e.,

$$
\operatorname{codim} U<\operatorname{codim}(W)+\operatorname{codim}(D)
$$

the codimensions being in $\Omega \times X_{\Gamma}$, or, equivalently,

$$
\operatorname{dim}(U)>\operatorname{dim}(W)-\operatorname{dim}\left(X_{\Gamma}\right)
$$

Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic lattice, and write $X_{\Gamma}:=\Omega / \Gamma$, as a quasi-projective variety. Let $W \subset \Omega \times X_{\Gamma}$ be an algebraic subvariety. Let $D \subset \Omega \times X_{\Gamma}$ be the graph of the uniformization map $\pi_{\Gamma}: \Omega \rightarrow X_{\Gamma}$, and U be an irreducible component of $W \cap D$ whose dimension is larger than expected, i.e.,

$$
\operatorname{codim} U<\operatorname{codim}(W)+\operatorname{codim}(D)
$$

the codimensions being in $\Omega \times X_{\Gamma}$, or, equivalently,

$$
\operatorname{dim}(U)>\operatorname{dim}(W)-\operatorname{dim}\left(X_{\Gamma}\right)
$$

Then, the projection of U to X_{Γ} is contained in a totally geodesic subvariety $Y \subsetneq X_{\Gamma}$.

Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice $\Gamma \subset \operatorname{Aut}(\Omega), \pi: \Omega \rightarrow X_{\Gamma}$. Modular functions are Γ-invariant meromorphic functions descending to rational functions on X_{Γ}.

Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice $\Gamma \subset \operatorname{Aut}(\Omega), \pi: \Omega \rightarrow X_{\Gamma}$. Modular functions are Γ-invariant meromorphic functions descending to rational functions on X_{Γ}.

Theorem (Mok-Pila-Tsimerman ([MPT19, Anna/s])

Let $V \subset \Omega$ be an irreducible complex analytic subvariety, not contained in any weakly special subvariety $E \subsetneq \Omega$. Let $\left(z_{i}\right)_{1 \leq i \leq n}$ be algebraic coordinates on $\Omega,\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ be a basis of modular functions. Then, trans.deg. $\mathbb{C} \mathbb{C}\left(\left\{z_{i}\right\},\left\{\phi_{j}\right\}\right) \geq n+\operatorname{dim} V$, where all ϕ_{j} are assumed defined at some point on V and restricted to V.

Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice $\Gamma \subset \operatorname{Aut}(\Omega), \pi: \Omega \rightarrow X_{\Gamma}$. Modular functions are Γ-invariant meromorphic functions descending to rational functions on X_{Γ}.

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let $V \subset \Omega$ be an irreducible complex analytic subvariety, not contained in any weakly special subvariety $E \subsetneq \Omega$. Let $\left(z_{i}\right)_{1 \leq i \leq n}$ be algebraic coordinates on $\Omega,\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}$ be a basis of modular functions. Then, trans.deg. $\mathbb{C} \mathbb{C}\left(\left\{z_{i}\right\},\left\{\phi_{j}\right\}\right) \geq n+\operatorname{dim} V$, where all ϕ_{j} are assumed defined at some point on V and restricted to V.
(1) We may take the algebraic coordinates $\left(z_{1}, \cdots, z_{n}\right)$ to be the Harish-Chandra coordinates on $\Omega \Subset \mathbb{C}^{n} \subset \widehat{\Omega}$.
(2) Here a weakly special subvariety $E \subset \Omega$ is a totally geodesic submanifold $E \subset \Omega$ such that $\pi(E) \subset X_{\Gamma}$ is quasi-projective.

Tame complex geometry

The Definable Remmert-Stein Theorem

Theorem (Peterzil-Starchenko [Proc. ICM 2010]) Let M be a definable complex manifold and E a definable complex analytic subset of M. Let A be a definable, complex analytic subset of $M-E$. Then, its topological closure \bar{A} is a complex analytic subset of M.

Tame complex geometry

The Definable Remmert-Stein Theorem

Theorem (Peterzil-Starchenko [Proc. ICM 2010]) Let M be a definable complex manifold and E a definable complex analytic subset of M. Let A be a definable, complex analytic subset of $M-E$. Then, its topological closure \bar{A} is a complex analytic subset of M.

The Definable Chow Theorem

Theorem (Peterzil-Starchenko, variation of [Proc. ICM 2010]) Let Y be a quasi-projective algebraic variety. Let $A \subset Y$ be definable, complex analytic, and closed in Y. Then, A is algebraic.

Ax-Schanuel for variations of Hodge structures

Theorem (Bakker-Tsimerman, Invent. Math. 2019)

Let X be a nonsingular quasi-projective manifold underlying a polarized integral variation of Hodge structures, \mathscr{D} be the associated period domain, $\mathscr{D} \subset \mathscr{D}$ the standard embedding of \mathscr{D} into its dual \mathscr{D}, which is a rational homogeneous manifold.

Ax-Schanuel for variations of Hodge structures

Theorem (Bakker-Tsimerman, Invent. Math. 2019)

Let X be a nonsingular quasi-projective manifold underlying a polarized integral variation of Hodge structures, \mathscr{D} be the associated period domain, $\mathscr{D} \subset \mathscr{D}$ the standard embedding of \mathscr{D} into its dual \mathscr{D}, which is a rational homogeneous manifold. Let W be the graph of the period map $\varphi: X \rightarrow \mathscr{D} / \Gamma$, where $\Gamma \subset \operatorname{Aut}(\mathscr{D})$ is the image of the monodromy representation of $\pi_{1}(X)$, assumed to be torsion-free. Let $V \subset X \times \mathscr{\mathscr { D }}$ be an algebraic subset and U be an irreducible component of $V \cap W$ satisfying

$$
\operatorname{codim}_{X \times \mathscr{\mathscr { D }}}(U)<\operatorname{codim}_{X \times \check{\mathscr{D}}}(V)+\operatorname{codim}_{X \times \mathscr{\mathscr { D }}}(W) .
$$

Ax-Schanuel for variations of Hodge structures

Theorem (Bakker-Tsimerman, Invent. Math. 2019)

Let X be a nonsingular quasi-projective manifold underlying a polarized integral variation of Hodge structures, \mathscr{D} be the associated period domain, $\mathscr{D} \subset \mathscr{D}$ the standard embedding of \mathscr{D} into its dual \mathscr{D}, which is a rational homogeneous manifold. Let W be the graph of the period map $\varphi: X \rightarrow \mathscr{D} / \Gamma$, where $\Gamma \subset \operatorname{Aut}(\mathscr{D})$ is the image of the monodromy representation of $\pi_{1}(X)$, assumed to be torsion-free. Let $V \subset X \times \mathscr{\mathscr { D }}$ be an algebraic subset and U be an irreducible component of $V \cap W$ satisfying

$$
\operatorname{codim}_{X \times \mathscr{\mathscr { D }}}(U)<\operatorname{codim}_{X \times \check{\mathscr{D}}}(V)+\operatorname{codim}_{X \times \check{\mathscr{D}}}(W) .
$$

Then, the canonical projection of U to X is contained in a proper weak Mumford-Tate subvariety.

A key ingredient for the generalization of Ax-Schanuel in the context of variations of Hodge structures was a volume growth estimate established by Bakker-Tsimerman for subvarieites generalizing that of Hwang-To. They achieved this by adapting the Lelong monotonicity formula.

A key ingredient for the generalization of Ax-Schanuel in the context of variations of Hodge structures was a volume growth estimate established by Bakker-Tsimerman for subvarieites generalizing that of Hwang-To. They achieved this by adapting the Lelong monotonicity formula.

Ax-Schanuel for the rank-1 case (Baldi-Ullmo)

Ax-Schanuel for the rank-1 case was recently proven by BaldiUllmo.

A key ingredient for the generalization of Ax-Schanuel in the context of variations of Hodge structures was a volume growth estimate established by Bakker-Tsimerman for subvarieites generalizing that of Hwang-To. They achieved this by adapting the Lelong monotonicity formula.

Ax-Schanuel for the rank-1 case (Baldi-Ullmo)

Ax-Schanuel for the rank-1 case was recently proven by BaldiUllmo. Given any torsion-free lattice $\Gamma \subset \operatorname{Aut}\left(\mathbb{B}^{n}\right), n \geq 2$, the lattice, though not necessarily arithmetic, must be integral in some precise way, and they embed $X_{\Gamma}=\mathbb{B}^{n} / \Gamma$ via some period map into \mathscr{D} / Γ and exploit atypcial intersection on $\mathscr{D} / \Gamma^{\prime}$, proving $A x-S c h a n u e l ~ f o r ~ X_{\Gamma}$ by means of Bakker-Tsimerman's Ax-Schanuel Theorem for period domains.

A key ingredient for the generalization of Ax-Schanuel in the context of variations of Hodge structures was a volume growth estimate established by Bakker-Tsimerman for subvarieites generalizing that of Hwang-To. They achieved this by adapting the Lelong monotonicity formula.

Ax-Schanuel for the rank-1 case (Baldi-Ullmo)

Ax-Schanuel for the rank-1 case was recently proven by BaldiUllmo. Given any torsion-free lattice $\Gamma \subset \operatorname{Aut}\left(\mathbb{B}^{n}\right), n \geq 2$, the lattice, though not necessarily arithmetic, must be integral in some precise way, and they embed $X_{\Gamma}=\mathbb{B}^{n} / \Gamma$ via some period map into \mathscr{D} / Γ and exploit atypcial intersection on $\mathscr{D} / \Gamma^{\prime}$, proving $A x-S c h a n u e l ~ f o r ~ X_{\Gamma}$ by means of Bakker-Tsimerman's Ax-Schanuel Theorem for period domains.

For finite-volume quotients of reducible bounded symmetric domains $\Omega=\Omega_{1} \times \cdots \times \Omega_{m} A \times$-Schanuel remains unsolved.

A key ingredient for the generalization of Ax-Schanuel in the context of variations of Hodge structures was a volume growth estimate established by Bakker-Tsimerman for subvarieites generalizing that of Hwang-To. They achieved this by adapting the Lelong monotonicity formula.

Ax-Schanuel for the rank-1 case (Baldi-Ullmo)

Ax-Schanuel for the rank-1 case was recently proven by BaldiUllmo. Given any torsion-free lattice $\Gamma \subset \operatorname{Aut}\left(\mathbb{B}^{n}\right), n \geq 2$, the lattice, though not necessarily arithmetic, must be integral in some precise way, and they embed $X_{\Gamma}=\mathbb{B}^{n} / \Gamma$ via some period map into \mathscr{D} / Γ and exploit atypcial intersection on $\mathscr{D} / \Gamma^{\prime}$, proving $A x-S c h a n u e l ~ f o r ~ X_{\Gamma}$ by means of Bakker-Tsimerman's Ax-Schanuel Theorem for period domains.

For finite-volume quotients of reducible bounded symmetric domains $\Omega=\Omega_{1} \times \cdots \times \Omega_{m} \mathrm{Ax}$-Schanuel remains unsolved. Especially, when there exist 1-dimensional factors Ω_{i} in general the counting argument of Pila-Wilkie no longer works.

Algebraic subsets of a BSD invariant under cocompact $\check{\Gamma}$

Proposition 1 (Chan-Mok, JDG 2021) Let D and Ω be BSD, $\Phi: \operatorname{Aut}_{0}(D) \rightarrow \operatorname{Aut}_{0}(\Omega)$ be a group homomorphism, $F: D \rightarrow \Omega$ be a Φ-equivariant holomorphic map. Then, F is totally geodesic.

Algebraic subsets of a BSD invariant under cocompact $\check{\Gamma}$

Proposition 1 (Chan-Mok, JDG 2021) Let D and Ω be BSD, $\Phi: \operatorname{Aut}_{0}(D) \rightarrow \operatorname{Aut}_{0}(\Omega)$ be a group homomorphism, $F: D \rightarrow \Omega$ be a Φ-equivariant holomorphic map. Then, F is totally geodesic.

Theorem (Chan-Mok, JDG 2021)

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, and $Z \subset \Omega$ be an algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\ulcorner } \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and Z / Γ is compact. Then, $Z \subset \Omega$ is totally geodesic.

Algebraic subsets of a BSD invariant under cocompact $\check{\Gamma}$

Proposition 1 (Chan-Mok, JDG 2021) Let D and Ω be BSD, $\Phi: \operatorname{Aut}_{0}(D) \rightarrow \operatorname{Aut}_{0}(\Omega)$ be a group homomorphism, $F: D \rightarrow \Omega$ be a Φ-equivariant holomorphic map. Then, F is totally geodesic.

Theorem (Chan-Mok, JDG 2021)

Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, and $Z \subset \Omega$ be an algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and Z / Γ is compact. Then, $Z \subset \Omega$ is totally geodesic.

Corollary (Chan-Mok, JDG 2021)

Let $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free cocompact lattice acting on $\Omega \Subset \mathbb{C}^{N}$, $X_{\Gamma}:=\Omega / \Gamma, \pi: \Omega \rightarrow X_{\Gamma}$ the uniformization map. Let $Y \subset X_{\Gamma}$ be an irreducible subvariety, and $Z \subset \Omega$ be an irreducible component of $\pi^{-1}(Y)$. Suppose $Z \subset \Omega$ is an algebraic subset. Then, $Z \subset \Omega$ is totally geodesic.

Asymptotic Total Geodesy of Embedded Poincaré Disks

Theorem (Chan-Mok [CM21], JDG)

Let $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^{N}$ is a bounded symmetric domain in its Harish-Chandra realization.

Asymptotic Total Geodesy of Embedded Poincaré Disks

Theorem (Chan-Mok [CM21], JDG)

Let $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^{N}$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Asymptotic Total Geodesy of Embedded Poincaré Disks

Theorem (Chan-Mok [CM21], JDG)

Let $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^{N}$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Theorem implies Proposition 1 by slicing D by totally geodesic disks.

Asymptotic Total Geodesy of Embedded Poincaré Disks

Theorem (Chan-Mok [CM21], JDG)

Let $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^{N}$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Theorem implies Proposition 1 by slicing D by totally geodesic disks.

Embedded Poincaré Disks with $\operatorname{Aut}(\Omega)$-equiv. Tangents

Proposition 2 Let $f_{0}:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding. Suppose $Z_{0}:=f_{0}(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a generic point $b \in \partial Z_{0}$.

Asymptotic Total Geodesy of Embedded Poincaré Disks

Theorem (Chan-Mok [CM21], JDG)

Let $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^{N}$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Theorem implies Proposition 1 by slicing D by totally geodesic disks.

Embedded Poincaré Disks with $\operatorname{Aut}(\Omega)$-equiv. Tangents

Proposition 2 Let $f_{0}:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding. Suppose $Z_{0}:=f_{0}(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a generic point $b \in \partial Z_{0}$. Then, \exists a holomorphic isometric embedding $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right), f(\Delta)=: Z$ such that (\dagger) All tangent lines $T_{x}(Z), x \in Z$, are equivalent under $\operatorname{Aut}(\Omega)$.

Asymptotic Total Geodesy of Embedded Poincaré Disks

Theorem (Chan-Mok [CM21], JDG)

Let $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^{N}$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Theorem implies Proposition 1 by slicing D by totally geodesic disks.

Embedded Poincaré Disks with $\operatorname{Aut}(\Omega)$-equiv. Tangents

Proposition 2 Let $f_{0}:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right)$ be a holomorphic isometric embedding. Suppose $Z_{0}:=f_{0}(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a generic point $b \in \partial Z_{0}$. Then, \exists a holomorphic isometric embedding $f:\left(\Delta, \lambda d s_{\Delta}^{2}\right) \rightarrow\left(\Omega, d s_{\Omega}^{2}\right), f(\Delta)=: Z$ such that
(\dagger) All tangent lines $T_{x}(Z), x \in Z$, are equivalent under $\operatorname{Aut}(\Omega)$.
Proof by rescaling: Compose with $\gamma_{i} \in \operatorname{Aut}(\Omega)$ and take limits.

Total Geodesy of Certain Curves on Tube Domains

Proposition 3

Let Ω be an irreducible bounded symmetric domain of tube type and of rank $r ; Z \subset \Omega$ be a local holomorphic curve with $\operatorname{Aut}(\Omega)$-equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Total Geodesy of Certain Curves on Tube Domains

Proposition 3

Let Ω be an irreducible bounded symmetric domain of tube type and of rank $r ; Z \subset \Omega$ be a local holomorphic curve with Aut(Ω)-equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Proof. $\pi: \mathbb{P} T_{\Omega} \rightarrow \Omega, L \rightarrow \mathbb{P} T_{\Omega}$ tautological line bundle. $[\mathscr{S}] \cong L^{-r} \otimes \pi^{*} E^{2}, E$ dual to $\mathcal{O}(1)$ on the compact dual M of Ω.

$$
(2 \pi)^{-1} \sqrt{-1} \partial \bar{\partial} \log \|s\|^{2}=r c_{1}\left(L, \hat{g}_{0}\right)-2 c_{1}\left(\pi^{*} E, \pi^{*} h_{0}\right)
$$

where \hat{g}_{0} and h_{0} are canonical metrics. $\|s(x)\|$ only depends on the $\operatorname{Aut}(\Omega)$-isomorphism type of $T_{x}(\Omega)$. Thus, $\|s\|=$ constant on Z.

Total Geodesy of Certain Curves on Tube Domains

Proposition 3

Let Ω be an irreducible bounded symmetric domain of tube type and of rank $r ; Z \subset \Omega$ be a local holomorphic curve with Aut(Ω)-equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Proof. $\pi: \mathbb{P} T_{\Omega} \rightarrow \Omega, L \rightarrow \mathbb{P} T_{\Omega}$ tautological line bundle. $[\mathscr{S}] \cong L^{-r} \otimes \pi^{*} E^{2}, E$ dual to $\mathcal{O}(1)$ on the compact dual M of Ω.

$$
(2 \pi)^{-1} \sqrt{-1} \partial \bar{\partial} \log \|s\|^{2}=r c_{1}\left(L, \hat{g}_{0}\right)-2 c_{1}\left(\pi^{*} E, \pi^{*} h_{0}\right),
$$

where \hat{g}_{0} and h_{0} are canonical metrics. $\|s(x)\|$ only depends on the $\operatorname{Aut}(\Omega)$-isomorphism type of $T_{x}(\Omega)$. Thus, $\|s\|=$ constant on Z. Hence,

$$
0=r c_{1}\left(L, \hat{g}_{0}\right)-2 c_{1}\left(\pi^{*} E, \pi^{*} h_{0}\right)
$$

\Leftrightarrow Gauss curvature $K(x)=-2 / r$, and $\sigma \equiv 0 . \square$

Bi-algebraicity by means of Nadel's Theorem

Maps inducing the representation $\theta: \check{\Gamma} \hookrightarrow H_{0} \subset G_{0}=\operatorname{Aut}_{0}(\Omega)$
Without loss of generality assume $\Omega \supset Z$ smallest BSD containing $Z, \imath: Y \hookrightarrow Z_{\check{\Gamma}}, \theta:=\imath_{*} \pi_{1}(Y)=\check{\Gamma} \subset H_{0}$. By the proof of Nadel's Theorem, H_{0} is a semisimple Lie group without compact factors acting on Ω.

Bi-algebraicity by means of Nadel's Theorem

Maps inducing the representation $\theta: \check{\Gamma} \hookrightarrow H_{0} \subset G_{0}=\operatorname{Aut}_{0}(\Omega)$
Without loss of generality assume $\Omega \supset Z$ smallest BSD containing $Z, \imath: Y \hookrightarrow Z_{\check{\Gamma}}, \theta:=\imath_{*} \pi_{1}(Y)=\check{\Gamma} \subset H_{0}$. By the proof of Nadel's Theorem, H_{0} is a semisimple Lie group without compact factors acting on Ω. Write $L \subset H_{0}$ for a maximal compact subgroup. Let $f: Y \rightarrow \check{\Gamma} \backslash H_{0} / L=: S_{\check{\Gamma}} \hookrightarrow X_{\check{\Gamma}}$ be any smooth map inducing θ.

Bi-algebraicity by means of Nadel's Theorem

Maps inducing the representation $\theta: \check{I} \hookrightarrow H_{0} \subset G_{0}=\operatorname{Aut}_{0}(\Omega)$
Without loss of generality assume $\Omega \supset Z$ smallest BSD containing $Z, \imath: Y \hookrightarrow Z_{\Gamma}, \theta:=\imath_{*} \pi_{1}(Y)=\Gamma \subset H_{0}$. By the proof of Nadel's Theorem, H_{0} is a semisimple Lie group without compact factors acting on Ω. Write $L \subset H_{0}$ for a maximal compact subgroup. Let $f: Y \rightarrow \check{\Gamma} \backslash H_{0} / L=: S_{\check{\Gamma}} \hookrightarrow X_{\check{\Gamma}}$ be any smooth map inducing θ. Since $\left(\Omega, d s_{\Omega}^{2}\right)$ is a Cartan-Hadamard manifold, i.e., a simply connected complete Riemannian manifold of nonpositive sectional curvature, the center of gravity argument gives a point $x \in \Omega$ fixed by L.

Bi-algebraicity by means of Nadel's Theorem

Maps inducing the representation $\theta: \check{I} \hookrightarrow H_{0} \subset G_{0}=\operatorname{Aut}_{0}(\Omega)$

Without loss of generality assume $\Omega \supset Z$ smallest BSD containing $Z, \imath: Y \hookrightarrow Z_{\Gamma}, \theta:=\imath_{*} \pi_{1}(Y)=\check{\Gamma} \subset H_{0}$. By the proof of Nadel's Theorem, H_{0} is a semisimple Lie group without compact factors acting on Ω. Write $L \subset H_{0}$ for a maximal compact subgroup. Let $f: Y \rightarrow \check{\Gamma} \backslash H_{0} / L=: S_{\check{\Gamma}} \hookrightarrow X_{\check{\Gamma}}$ be any smooth map inducing θ. Since $\left(\Omega, d s_{\Omega}^{2}\right)$ is a Cartan-Hadamard manifold, i.e., a simply connected complete Riemannian manifold of nonpositive sectional curvature, the center of gravity argument gives a point $x \in \Omega$ fixed by L. Regard H_{0} / L as the orbit $H_{0} x \subset \Omega=G_{0} / K, L \subset K=\operatorname{Isot}_{x}\left(\Omega, d s_{\Omega}^{2}\right)$, hence $S_{\check{\Gamma}} \hookrightarrow X_{\check{\Gamma}}:=\check{\Gamma} \backslash \Omega=\check{\Gamma} \backslash G / K$ as a real analytic submanifold.

Proposition $1 \Rightarrow$ Total Geodesy of $Z \subset \Omega$

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $\imath, f: Y \rightarrow X_{\check{\Gamma}}$ inducing the representation θ are homotopic to each other.

Proposition $1 \Rightarrow$ Total Geodesy of $Z \subset \Omega$

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $\imath, f: Y \rightarrow X_{\check{\Gamma}}$ inducing the representation θ are homotopic to each other.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_{0} acts on Ω.

Proposition $1 \Rightarrow$ Total Geodesy of $Z \subset \Omega$

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $\imath, f: Y \rightarrow X_{\check{\Gamma}}$ inducing the representation θ are homotopic to each other.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_{0} acts on Ω. For any $x \in X$, we have

$$
\operatorname{dim}_{\mathbb{R}}\left(S_{\check{\Gamma}}\right) \leq \operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right) \leq \operatorname{dim}_{\mathbb{R}} Z=\operatorname{dim}_{\mathbb{R}} Y:=2 m .
$$

Proposition $1 \Rightarrow$ Total Geodesy of $Z \subset \Omega$

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $\imath, f: Y \rightarrow X_{\check{\Gamma}}$ inducing the representation θ are homotopic to each other.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_{0} acts on Ω. For any $x \in X$, we have

$$
\operatorname{dim}_{\mathbb{R}}\left(S_{\check{\Gamma}}\right) \leq \operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right) \leq \operatorname{dim}_{\mathbb{R}} Z=\operatorname{dim}_{\mathbb{R}} Y:=2 m
$$

By homotopy $\int_{Y}\left(\imath^{*} \omega\right)^{m}=\int_{Y}\left(f^{*} \omega\right)^{m}$. The first integral gives $m!\operatorname{Vol}\left(Y,\left.\omega\right|_{Y}\right)>0$.

Proposition $1 \Rightarrow$ Total Geodesy of $Z \subset \Omega$

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $\imath, f: Y \rightarrow X_{\check{\Gamma}}$ inducing the representation θ are homotopic to each other.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_{0} acts on Ω. For any $x \in X$, we have

$$
\operatorname{dim}_{\mathbb{R}}\left(S_{\check{\Gamma}}\right) \leq \operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right) \leq \operatorname{dim}_{\mathbb{R}} Z=\operatorname{dim}_{\mathbb{R}} Y:=2 m
$$

By homotopy $\int_{Y}\left(\imath^{*} \omega\right)^{m}=\int_{Y}\left(f^{*} \omega\right)^{m}$. The first integral gives $m!\operatorname{Vol}\left(Y,\left.\omega\right|_{Y}\right)>0$. A contradiction would arise if we had strict inequality of dimensions. Hence, equality holds, Z is homogeneous under H_{0}, and H_{0} is of Hermitian type.

Proposition $1 \Rightarrow$ Total Geodesy of $Z \subset \Omega$

Since X_{Γ} is a $K(\pi, 1)$, the two smooth maps $\imath, f: Y \rightarrow X_{\Gamma}$ inducing the representation θ are homotopic to each other.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_{0} acts on Ω. For any $x \in X$, we have

$$
\operatorname{dim}_{\mathbb{R}}\left(S_{\check{\Gamma}}\right) \leq \operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right) \leq \operatorname{dim}_{\mathbb{R}} Z=\operatorname{dim}_{\mathbb{R}} Y:=2 m
$$

By homotopy $\int_{Y}\left(\imath^{*} \omega\right)^{m}=\int_{Y}\left(f^{*} \omega\right)^{m}$. The first integral gives $m!\operatorname{Vol}\left(Y,\left.\omega\right|_{Y}\right)>0$. A contradiction would arise if we had strict inequality of dimensions. Hence, equality holds, Z is homogeneous under H_{0}, and H_{0} is of Hermitian type. Thus, $Z \subset \Omega$ is the image of an equivariant holomorphic map between bounded symmetric domains.

Proposition $1 \Rightarrow$ Total Geodesy of $Z \subset \Omega$

Since $X_{\check{\Gamma}}$ is a $K(\pi, 1)$, the two smooth maps $\imath, f: Y \rightarrow X_{\check{\Gamma}}$ inducing the representation θ are homotopic to each other.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_{0} acts on Ω. For any $x \in X$, we have

$$
\operatorname{dim}_{\mathbb{R}}\left(S_{\check{\Gamma}}\right) \leq \operatorname{dim}_{\mathbb{R}}\left(H_{0} x\right) \leq \operatorname{dim}_{\mathbb{R}} Z=\operatorname{dim}_{\mathbb{R}} Y:=2 m
$$

By homotopy $\int_{Y}\left(\imath^{*} \omega\right)^{m}=\int_{Y}\left(f^{*} \omega\right)^{m}$. The first integral gives $m!\operatorname{Vol}\left(Y,\left.\omega\right|_{Y}\right)>0$. A contradiction would arise if we had strict inequality of dimensions. Hence, equality holds, Z is homogeneous under H_{0}, and H_{0} is of Hermitian type. Thus, $Z \subset \Omega$ is the image of an equivariant holomorphic map between bounded symmetric domains. By Proposition $1, Z \subset \Omega$ is totally geodesic.

Existential Closedness Problem

The original Existential Closedness Problem, raised by Zilber, asks for a minimal set of conditions on an algebraic subvariety of $V \subset \mathbb{C}^{n} \times\left(C^{*}\right)^{n}$ to guarantee that $V \cap \operatorname{Graph}(\exp)$ is Zariski dense in V. It ties up with the André-Oort and the Zilber-Pink conjectures in Diophantine geometry.

Existential Closedness Problem

The original Existential Closedness Problem, raised by Zilber, asks for a minimal set of conditions on an algebraic subvariety of $V \subset \mathbb{C}^{n} \times\left(C^{*}\right)^{n}$ to guarantee that $V \cap \operatorname{Graph}(\mathbf{e x p})$ is Zariski dense in V. It ties up with the André-Oort and the Zilber-Pink conjectures in Diophantine geometry.

ECP for Shimura Varieties

Theorem (Eterovic-Zhao 2021) Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsionfree arithmetic lattice. Write $X_{\Gamma}:=\Omega / \Gamma$, identified as a Zariski open subset $X_{\Gamma} \subset \overline{X_{\Gamma}}$ of its minimal (projective) compactification $\overline{X_{\Gamma}}$, and denote by $q: \Omega \rightarrow X_{\Gamma}$ the uniformization map. Write $\pi_{1}: \mathbb{C}^{N} \times X_{\Gamma} \rightarrow \mathbb{C}^{N}$ for the canonical projection map onto the first Cartesian factor.

Existential Closedness Problem

The original Existential Closedness Problem, raised by Zilber, asks for a minimal set of conditions on an algebraic subvariety of $V \subset \mathbb{C}^{n} \times\left(C^{*}\right)^{n}$ to guarantee that $V \cap \operatorname{Graph}(\mathbf{e x p})$ is Zariski dense in V. It ties up with the André-Oort and the Zilber-Pink conjectures in Diophantine geometry.

ECP for Shimura Varieties

Theorem (Eterovic-Zhao 2021) Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsionfree arithmetic lattice. Write $X_{\Gamma}:=\Omega / \Gamma$, identified as a Zariski open subset $X_{\Gamma} \subset \overline{X_{\Gamma}}$ of its minimal (projective) compactification $\overline{X_{\Gamma}}$, and denote by $q: \Omega \rightarrow X_{\Gamma}$ the uniformization map. Write $\pi_{1}: \mathbb{C}^{N} \times X_{\Gamma} \rightarrow \mathbb{C}^{N}$ for the canonical projection map onto the first Cartesian factor. Let now $V \subset \mathbb{C}^{N} \times X_{\Gamma}$ be an irreducible algebraic subvariety such that $\pi_{1}(V)$ is Zariski dense in \mathbb{C}^{N}.

Existential Closedness Problem

The original Existential Closedness Problem, raised by Zilber, asks for a minimal set of conditions on an algebraic subvariety of $V \subset \mathbb{C}^{n} \times\left(C^{*}\right)^{n}$ to guarantee that $V \cap \operatorname{Graph}(\mathbf{e x p})$ is Zariski dense in V. It ties up with the André-Oort and the Zilber-Pink conjectures in Diophantine geometry.

ECP for Shimura Varieties

Theorem (Eterovic-Zhao 2021) Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsionfree arithmetic lattice. Write $X_{\Gamma}:=\Omega / \Gamma$, identified as a Zariski open subset $X_{\Gamma} \subset \overline{X_{\Gamma}}$ of its minimal (projective) compactification $\overline{X_{\Gamma}}$, and denote by $q: \Omega \rightarrow X_{\Gamma}$ the uniformization map. Write $\pi_{1}: \mathbb{C}^{N} \times X_{\Gamma} \rightarrow \mathbb{C}^{N}$ for the canonical projection map onto the first Cartesian factor. Let now $V \subset \mathbb{C}^{N} \times X_{\Gamma}$ be an irreducible algebraic subvariety such that $\pi_{1}(V)$ is Zariski dense in \mathbb{C}^{N}. Then, $\pi_{1}(V \cap \operatorname{Graph}(q))$ is Zariski dense in \mathbb{C}^{N}, and $V \cap \operatorname{Graph}(q)$ is Zariski dense in V.

Existential Closedness Problem

The original Existential Closedness Problem, raised by Zilber, asks for a minimal set of conditions on an algebraic subvariety of $V \subset \mathbb{C}^{n} \times\left(C^{*}\right)^{n}$ to guarantee that $V \cap \operatorname{Graph}(\mathbf{e x p})$ is Zariski dense in V. It ties up with the André-Oort and the Zilber-Pink conjectures in Diophantine geometry.

ECP for Shimura Varieties

Theorem (Eterovic-Zhao 2021) Let $\Omega \Subset \mathbb{C}^{N}$ be a bounded symmetric domain in its Harish-Chandra realization, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsionfree arithmetic lattice. Write $X_{\Gamma}:=\Omega / \Gamma$, identified as a Zariski open subset $X_{\Gamma} \subset \overline{X_{\Gamma}}$ of its minimal (projective) compactification $\overline{X_{\Gamma}}$, and denote by $q: \Omega \rightarrow X_{\Gamma}$ the uniformization map. Write $\pi_{1}: \mathbb{C}^{N} \times X_{\Gamma} \rightarrow \mathbb{C}^{N}$ for the canonical projection map onto the first Cartesian factor. Let now $V \subset \mathbb{C}^{N} \times X_{\Gamma}$ be an irreducible algebraic subvariety such that $\pi_{1}(V)$ is Zariski dense in \mathbb{C}^{N}. Then, $\pi_{1}(V \cap \operatorname{Graph}(q))$ is Zariski dense in \mathbb{C}^{N}, and $V \cap \operatorname{Graph}(q)$ is Zariski dense in V.

The proof involves studying the Shilov boundary of $\Omega \Subset \mathbb{C}^{N}$.

Bibliography

Bakker, J.; Tsimerman, J.: The Ax-Schanuel conjecture for variations of Hodge structures, Invent. Math. 217 (2019), 77-94.
Bakker, J.; Tsimerman, J.: Lectures on the Ax-Schanuel conjecture, in Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces, Hyperbolicity in Montréal, Springer Verlag 2020.
Baldi, G.; Ullmo, E.: Special subvarieties of non-arithmetic ball quotients and Hodge Theory.
Bombieri, E.: Algebraic values of meromorphic maps, Invent. Math. 10 (1970), 267-287.
Chan, S.-T.; Mok, N.: Asymptotic total geodesy of local holomorphic curves exiting a bounded symmetric domain and applications to a uniformization problem for algebraic subsets, J. Diff. Geom. (2021).
Eterović, S.; Zhao, R.: Algebraic varieties and automorphic functions. Preprint 2020, arXiv:2107.10392.

Hwang, J.-M.; To, W.-K.: Volumes of complex analytic subvarieties of Hermitian symmetric spaces, Amer. J. Math. 124 (2002), 1221-1246.

Klingler, B.; Ullmo, E.; Yafaev, A.: The hyperbolic Ax-Lindemann- Weierstrass conjecture, Publ. Math. IHES 123 (2016), 333-360.

Lang, S.: Introduction to transcendental numbers, Addison-Wesley Pub. Co., Reading, Mass.-London-Don Mills, Ont. 1966.

Lelong, P.: Fonctions plurisousharmoniques et formes différentielles positives, Gordon \& Breach, Paris-London-New York 1968.

Mok, N.: Aspects of Khler geometry on arithmetic varieties. Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 335-396, Proc. Sympos. Pure Math. 52, Part 2, Amer. Math. Soc., Providence, RI, 1991.
Mok, N.: Rigidity problems on compact quotients of bounded symmetric domains, AMS/IP Studies in Advanced Mathematics 39 (2007), 201-249.
Mok, N.; To, W.-K.: Eigensections on Kuga families of abelian varieties and finiteness of their Mordell-Weil groups, J. Reine Angew. Math. 444 (1993), 29-78.
Mok, N.; Ng, S.-C.: Multiplicities of the Betti map associated to a section of an elliptic surface from a differential-geometric perspective, arXiv:2206.09405
Mok, N.: Zariski closures of images of algebraic subsets under the uniformization map on finite-volume quotients of the complex unit ball, Compos. Math. 155 (2019), 2129-2149.
Mok, N.; Pila, J.; Tsimerman, J.: Ax-Schanuel for Shimura varieties. Ann. of Math. 189 (2019), 945-978.

Mok, N.; Zhong. J.-Q.: Compactifying complete Kähler-Einstein manifolds of finite topological type and bounded curvature, Annals of Math. 129 (1989), 427-470.

Peterzil, Y.; Starchenko, S. Tame complex analysis and o-minimality, Proceedings of the International Congress of Mathematicians, Volume II, 58-81, Hindustan Book Agency, New Delhi, 2010.

Pila, J.; Tsimerman, J.: Ax-Schanuel for the j-function, Duke Math. J. 165 (2016), 2587-2605.
Pila, J.; Wilkie, A.J.: The rational points of a definable set, Duke Math. J. 133 (2006), 591-616.

Pila, J.; Zannier, U.: Rational points in periodic analytic sets and the Manin-Mumford conjecture, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 19 (2008), 149-162.

Tsimerman, J.: The André-Oort conjecture for \mathcal{A}_{g}, Ann. of Math. 187 (2018), 379-390.
Tsimerman, J.: Functional transcendence and arithmetic applications, Proceedings of the ICM-Rio de Janeiro 2018, Volume II, Invited lectures, 435-454, World Sci. Publ., Hackensack, NJ, 2018.

THANK YOU!!

