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Moduli Space of Elliptic Curves

An elliptic curve is complex-analytically a compact Riemann surface

S of genus 1. In other words, S := C/L for some lattice L ⊂ C.

Replacing L by λL for some λ ∈ C− {0}, without loss of generality we

may assume Lτ = Z + Zτ , Im(τ) > 0, i.e., τ ∈ H, where

H :=
{
τ ∈ C : Im(τ) > 0

}
, the upper half plane. Write Sτ := C/Lτ .

For τ, τ ′ ∈ H, we have Sτ ∼= Sτ ′ if and only if there exists λ ∈ C,

λ 6= 0 such that Lτ ′ = λLτ , i.e., if and only if τ ′ = aτ+b
cτ+d where

ad − bc 6= 0. Thus, the set of equivalence classes of C/L is in

one-to-one correspondence with X = X (1) := H/PSL(2,Z). PSL(2,Z)

acts discretely on H with fixed points. We have the j-function

j : X (1)
∼=−→ C, and X (1) = P1.

A suitable finite-index subgroup Γ ⊂ PSL(2,Z) acts on H without fixed

points and XΓ := H/Γ can be compactified to a compact Riemann surface.
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The j-function

On the upper half plane H = {τ : Im(τ) > 0} define

j(τ) = 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
= 1728

g2(τ)3

∆(τ)

where g2(τ) = 60
∑

(m,n) 6=(0,0)

(m+nτ)−4; g3(τ) = 140
∑

(m,n)6=(0,0)

(m+nτ)−6.

and ∆(τ) := g2(τ)3 − 27g3(τ)2 is the modular discriminant.

The j-function establishes a biholomorphism j : H/SL(2,Z)
∼=−→ C.
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Invariant Kähler metrics on H× C

On π : H× C→ H, there is the relative tangent bundle V = Tπ, and the

horizontal real-analytic integrable subbundle H ⊂ T (H× C) whose leaves

are images of horizontal sections w = a + bτ , a, b ∈ R. We have

T (H×C) = V ⊕H. There is a semi-Kähler form µ with kernel H so that,

denoting by ω the Kähler form of the Poincaré metric on H, and defining

νt := π∗ω + t2µ, t > 0, (H× C, νt) is a Kähler form invariant under

SL(2,R) nR2. Let Γ ⊂ SL(2,Z) be a torsion-free finite index subgroup.

Write X 0
Γ := H/Γ, M0

Γ = (H× C)/(Γ n Z2), π :MΓ → XΓ a

compactification to a minimal elliptic surface over the projective curve XΓ.

Verticality of a section

Let σ : XΓ →MΓ be a holomorphic section and dσ : TXΓ → σ∗T (MΓ)
be its differential. Define the verticality of σ as
ησ := ΠV ◦ dσ|T (X 0

Γ ) : T (X 0
Γ )→ σ∗V . Thus, ησ is a real-analytic section

of the holomorphic line bundle T ∗(X 0
Γ )⊗ σ∗V on X 0

Γ .
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Shioda’s Theorem: A differential-geometric proof

Proposition (geometric characterization of torsion sections)

ησ ≡ 0 if and only if σ is a torsion section.

Shioda’s Theorem (diff.-geom. proof by Mok (1991))

The Mordell-Well group of the elliptic curve EΓ over C(XΓ) is finite.

Proof: Given a holomorphic section σ : XΓ →MΓ σ corresponds to

f : H → C satisfying f (γτ) = f (τ)
cγτ+dγ

+ Aγ(γτ) + Bγ for some integers

Aγ ,Bγ , in which γ(τ) =
aγτ+bγ

cγ+dγ
. Then, f ′′(γτ) = (cγτ + dγ)3f ′′(τ) .

(Eichler) We discovered that ξσ := f ′′(τ)(dτ)
3
2 is actually given by

ξσ = ∇ησ. We have ∂ξσ = 0, hence ∂∇ησ = 0. Interchanging the order of

differention we have ∇∗∇ησ = −ησ. Integrating by parts we get∫
XΓ
‖ησ‖2ω = −

∫
XΓ
‖∇ησ‖2ω , forcing ησ ≡ 0, hence σ is a torsion section.
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Betti coordinates and the Betti map of a section

Betti coordinates

On H× C, for a point (τ,w), express w in terms of a basis of the lattice

Lτ , e.g., w = β1 · 1 + β2τ . The pair (β1, β2) are Betti coordinates.

The Betti map associated to a holomorphic section σ

For a holomorphic section σ : XΓ →MΓ, the local pullback

β := (σ∗β1, σ
∗β2) is called the Betti map of σ. Since the construction of

(β1, β2) involves a choice of abelian logarithm on M0
Γ, so does the Betti

map β, but the vanishing order of β at any point b ∈ B0 is independent of

such choice and is intrinsic to the section σ.
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The Betti map

The following definition is due to Corvaja-Demeio-Masser-Zannier.

The Betti multiplicity of a Betti map at a finite point

The multiplicity of a Betti map β at b is defined to be the smallest positive

integer m(b) such that the partial derivatives of σ∗β1, σ
∗β2 at b vanish up

to order m(b)− 1. We will also call m(b) the Betti multiplicity of σ at b.

The Betti multiplicity of a Betti map at a cusp

When a holomorphic section σ cuts over a base point c of bad reduction,

i.e., corresponding to a cusp, we express the section σ locally near the

cusp c in terms of toroidal compactification Σ(w) = (ξ(w), ζ(w)) If

|ξ(0)| = 1, then we define the Betti multiplicity mc of σ at c to be the

vanishing order of ξ(w)− ξ(0) at w = 0. Otherwise, we define mc = 1.
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Betti Multiplicities for a Section of an Elliptic Surface

Theorem (Ulmer-Ursúa IMRN 2021)

Suppose π : E → B is a non-isotrivial minimal elliptic surface, with exactly
δ singular fibers, and σ : B → E be a section of infinite order. Denote by g
be the genus of B. Let O denote the zero section of E and denote by d
the degree of the holomorphic line bundle O∗Ω1

E|C , where Ω1
E|C denotes

the dual of the relative tangent bundle. Denote by S ⊂ B the set of base
points of singular fibers, and write B0 := B − S . Then,∑

b∈B0(mb − 1) ≤ 2g − 2− d + δ .

(a) The finiteness of points of B0 with multiplicities ≥ 2 was due to
Corvaja-Demeio-Masser-Zannier (Crelles 2022)

(b) Multiplities mc at cusps were defined algebraically and using the
Kodaira classification of elliptic surfaces, and the analytic definition of
Mok-Ng using toroidal coordinates agree with the algebraic definition.
Equality was proven when the sum on the left hand side is
replaced by taking all b ∈ B, including the cusps.
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Diff.-geom. proof for estimates on Betti multiplicities

Theorem (Mok-Ng 2022)

Let E → B be an elliptic surface over a projective curve B with a
classifying map f : B → X of degree d , where X = XΓ(k) for some k ≥ 3.
Let σ be a non-torsion section of E and mb be the Betti multiplicity of σ
at b, then ∑

b∈B

(mb − 1) =
∑

b∈B\S

(rb − 1) +
d

2π

∫
X 0

ω,

where X 0 = X 0
Γ(k) and S = f −1(X \ X 0); rb is the ramification index of f

at b and ω is the Kähler form on X 0 descending from the invariant form
−i∂∂̄ log Imτ on H.

The general case can be reduced to the case with classifying maps.

Corollary

Denote by Bσ the divisor of points on B0 over which the Betti multiplicity
mb ≥ 2, with weight mb − 1 at each of these points. We have

|Bσ| ≤ 2g − 2− deg(f ∗(KX ⊗ SX )
1
2 )) + |S | , where g is the genus of B.
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Mordell-Weil Groups Complex Function Fields

Main Theorem (Mok-To (Crelles 1991))

Let π : AΓ → XΓ be a Kuga family of polarized abelian varieties without
locally constant parts, π : AΓ → XΓ be a projective compactification which
is a geometic model for the associated modular polarized abelian variety
AΓ over C(XΓ. Then, there are at most a finite number of
meromorphic sections of AΓ over XΓ, i.e., rankZ(AΓ(C(XΓ))) = 0 for
the Mordell-Weil group AΓ(C(XΓ).

Mordell-Weil group for f : B → XΓ dominant and equidimensional

Theorem(Mok 1991) Let Γ ⊂ Sp(g ,Z) be torsion-free. Suppose
dim(B) = dim(XΓ) and f : B → XΓ is a dominant classifying map. Denote
by Af the elliptic curve over C(B) obtained by pulling back the universal
abelian variety AΓ over C(XΓ) by the classifying map f . Then,

rankZAf (C(B)) ≤ C ·Volume(Rf , ω) ,

where ω is the Kähler-Einstein (1,1)-form on XΓ, C is a universal constant

depending only on XΓ, and Rf is the ramification divisor f : B → XΓ.
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Shimura varieties: An example

The Siegel upper half-plane Hg

L ⊂ Cn lattice, C/L = A ∼= S1 × · · · × S1 (2g copies), H1(A,R) ∼= R2g

first de Rham cohomology group. A is called an Abelian variety if
A ↪→ PN is (projective)-algebraic.

A (principally polarized) Abelian variety corresponds to an n-by-n matrix τ
obeying Riemann bilinear relations (a) τ is symmetric, (b) Im(τ) > 0.
Lτ ⊂ Cg is spanned by basis vectors e1, · · · , eg and column vectors
τ1, · · · τg of τ , Aτ := Cg/Lτ . Hg := {τ ∈ Mg (C) : τ t = τ ; Im(τ) > 0}.
The Cayley transform κ(τ) = (τ − ıIg ) (τ + ıIg )−1 gives a biholomorphism

κ : Hg
∼=−→ D III

g = {Z ∈ Mg (C) : Z t = Z , I − Z Z > 0} with a BSD.

We have a Hodge decomposition H1(A,C) = H0(A,ΩA)⊕ H1(A,OA)
in terms of ∂-cohomology and harmonic forms.

Sp(g ;R) acts on Hg as hol. isometries. The arithmetic subgroup
Sp(g ;Z) ⊂ Sp(g ;R) acts on Hg as a discrete group. Ag := Hg/Sp(g ;Z)
is called the Siegel modular variety. In general, for Ω a BSD and an
arithmetic subgroup Γ ⊂ Aut(Ω), XΓ := Ω/Γ is called a Shimura variety.
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A (principally polarized) Abelian variety corresponds to an n-by-n matrix τ
obeying Riemann bilinear relations (a) τ is symmetric, (b) Im(τ) > 0.
Lτ ⊂ Cg is spanned by basis vectors e1, · · · , eg and column vectors
τ1, · · · τg of τ , Aτ := Cg/Lτ . Hg := {τ ∈ Mg (C) : τ t = τ ; Im(τ) > 0}.
The Cayley transform κ(τ) = (τ − ıIg ) (τ + ıIg )−1 gives a biholomorphism

κ : Hg
∼=−→ D III

g = {Z ∈ Mg (C) : Z t = Z , I − Z Z > 0} with a BSD.

We have a Hodge decomposition H1(A,C) = H0(A,ΩA)⊕ H1(A,OA)
in terms of ∂-cohomology and harmonic forms.

Sp(g ;R) acts on Hg as hol. isometries. The arithmetic subgroup
Sp(g ;Z) ⊂ Sp(g ;R) acts on Hg as a discrete group. Ag := Hg/Sp(g ;Z)
is called the Siegel modular variety. In general, for Ω a BSD and an
arithmetic subgroup Γ ⊂ Aut(Ω), XΓ := Ω/Γ is called a Shimura variety.
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Irreducible Bounded Symmetric Domains

The rank-1 case

The complex unit ball Bn :=
{

z ∈ Cn : ‖z‖2 < 1
}

Classical domains in general

D I (p, q) = {Z ∈ M(p, q,C) : I − Z
t
Z > 0} , p, q ≥ 1

D II
n (n, n) = {Z ∈ D I

n,n : Z t = −Z} , n ≥ 2

D III
n = {Z ∈ D I

n,n : Z t = Z} , n ≥ 3

D IV
n =

{
(z1, . . . , zn) ∈ Cn : ‖z‖2 < 2 ;

‖z‖2 < 1 +
∣∣ 1

2

n∑
i=1

z2
i

∣∣2} , n ≥ 3 .

Exceptional domains

DV , dim 16, type E6; DVI , dim 27, type E7
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The André-Oort Conjecture

A point τ ∈ H such that τ, j(τ) ∈ Q is called a special point (in which
case [Q(τ) : Q] = 2 by Schneider). The notion of special points is defined
for any Shimura variety XΓ = Ω/Γ, and the André-Oort Conjecture
ascertains that the Zariski closure of any set of special points on XΓ is
a finite union of Shimura subvarieties X ′Γ′ ↪→ XΓ.

The Pila-Zannier strategy

Pila-Zannier [PZ10] proposed strategy for finiteness and characterization
problems concerning distinguished points in different arithmetic contexts
(e.g. torsion points on Abelian varieties, special points on Shimura
varieties). For the André-Oort Conjecture on a Shimura variety XΓ = Ω/Γ,
π : Ω→ XΓ, it breaks down into (a) an arithmetic component consisting
of lower estimates on the size of Galois orbits of special points and
(b) a geometric component consisting of the characterization of
Zariski closures of π(S) ⊂ XΓ for an algebraic subset S ⊂ Ω.

Ngaiming Mok (HKU) Complex Function Fields August 19, 2022 13 / 40
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Theorem of Gelfond-Schneider

Lang’s general formulation

Main Theorem (Lang 1966) Let K be a number field, f1, · · · , fN be
meromorphic functions on C of order ρ,

trans.deg.K K (f1, · · · , fN) ≥ 2,
and D = ∂

∂z : K (f1, · · · , fN) ↪→ K (f1, · · · , fN). Let x1, ..., xm be distinct
complex numbers outside the union of pole sets of f1, · · · , fN such that
fi (xν) ∈ K for 1 ≤ i ≤ N, 1 ≤ ν ≤ m. Then, m ≤ 20ρ[K : Q].

Hermite-Lindemann (1882)

Corollary Let α 6= 0 be an algebraic number. Then, eα /∈ Q.

Proof. Assume eα algebraic. Put K = Q(α, eα); f (z) = z , g(z) = ez .
Main Theorem applies but f , g take values in K for xk = kα, k ∈ N,
contradiction! � Hence, e = e1 /∈ Q; e2πı = 1 ∈ Q⇒ π /∈ Q.

Gelfond-Schneider (1934)

Corollary Let α, β ∈ Q, α 6= 0, 1 and β /∈ Q. Then, αβ /∈ Q .

Proof. Assume αβ ∈ Q. Put K = Q(α, β, αβ); f (z) = ez , g(z) = eβz ;
xk = k logα, k ∈ N to get a contradiction.
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Lindemann-Weierstrass Theorem and Schanuel Conjecture

Lindemann-Weiersrstrass Theorem (1882)

Suppose α1, · · · , αn ∈ Q are Q-linearly independent. Then, eα1 , · · · , eαn

are algebraically independent.

Schanuel Conjecture (1960s)

Suppose α1, · · · , αn ∈ C are Q-linearly independent. Then,

trans.deg.QQ (α1, · · · , αn; eα1 , · · · , eαn ) ≥ n.

LWT answers the special case of SC where α1, · · · , αn ∈ Q

Baker’s Theorem (1975)

Suppose x1, · · · , xn ∈ Q, and log(x1), · · · log(xn) are linearly independent

over Q. Then 1, log(x1), · · · , log(xn) are linearly independent over Q
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Algebraic Diff. Eqns. in Several Complex Variables

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)

Theorem Let K be a number field, f1, · · · , fN be meromorphic

functions on Cd of order ρ,

trans.deg.K K (f1, · · · , fN) ≥ d + 1, and

D = ∂
∂zα

: K (f1, · · · , fN) ↪→ K (f1, · · · , fN) for 1 ≤ α ≤ d. Then, the set

of ζ ∈ Cd lying outside poles of f1, · · · , fN and obeying f (ζ) ∈ K N

must lie in an alg. hypersurface of degree ≤ d(d + 1)ρ[K : Q] + 2d .

Closed positive (p, p)-currents (Lelong 1964)

A C∞ positive (1,1)-form ω means ı
∑
ωi j̄ (z)dz i ∧ dz j ,

(
ωi j̄ (z)

)
> 0. A

(p, p)-current T is positive ⇔ T ∧ ω1 ∧ · · · ∧ ωn−p ≥ 0 as a measure. (ωi

like ω). A (d-)closed positive C∞(1, 1)-form is locally T = ı∂∂ϕ where

ϕ ∈ C∞ and
(

∂2ϕ
∂zi∂zj

)
> 0. Locally a closed positive (1,1)-current

T = ı∂∂ϕ where ϕ is weakly psh.
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Techniques from complex geometry

Monotonicity of weighted mass of T over concentric Euclidean balls

Assume T defined on Bn(0; R). For 0 < r < R denote by m(T ; 0; r) the

integral of T ∧ (ı∂∂‖z‖2)n−p over Bn(0; r); ν(T , 0; r) := m(T ,0;r)
Vol(Bn−p(0;R)) .

Lelong proved that ν(T ; 0; r) is decreasing as r → 0; the limit as r → 0 is
now called the Lelong number ν(T ; 0) at 0. E.g., T := [S ], the integral
current of a pure (n − p)-dimensional complex analytic subvariety
S ⊂ Bn(0; R), where ν([S ]; 0) = mult0(S) ∈ N is the multiplicity of S at 0.

Recovering complex analytic subvarieties from density conditions

Theorem (Siu [Invent. Math. (1970)]) Let X be a complex manifold,
dimC(X ) =: n, 1 ≤ p < n, and T be a closed positive (p, p)-current on X .
Let c > 0. Put Ec (T ) := {x ∈ X : ν(T ; x) ≥ c}. Then, Ec(T ) ⊂ X is a
complex analytic subvariety where each irreducible subvariety is of
complex codimension ≥ p.
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The Ax-Lindemann Theorem on XΓ = Ω/Γ

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and

Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let Ω b CN be a bounded symmetric domain in its Harish-Chandra
realization, Γ ⊂ Aut(Ω) be an arithmetic torsion-free lattice. Write
XΓ := Ω/Γ, π : Ω→ XΓ for the uniformization map. Let Z ⊂ Ω be an

irreducible algebraic subset and denote by Z = π(Z )
Zar ⊂ XΓ the Zariski

closure of image of Z under the uniformization map in the quasi-projective
variety XΓ. Then, Z ⊂ XΓ is a totally geodesic subset.

Key arguments are from model theory (counting theorem Pila-Wilkie) and
complex differential geometry (volume estimates of Hwang-To).

Using the above Tsimerman [Ts18] has proven the André-Oort Conjecture
for Siegel modular varieties Ag = Hg/Sp(g ;Z). Recently, Pila-Shankar-
Tsimerman has announced a solution of the full André-Oort Conjecture.
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for Siegel modular varieties Ag = Hg/Sp(g ;Z). Recently, Pila-Shankar-
Tsimerman has announced a solution of the full André-Oort Conjecture.
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Counting points on definable sets

For a rational point x = p
q ; p, q ∈ Z, q 6= 0, where |p| and |q| are coprime,

we define the height H(x) = max(|p|, |q|). For x = (x1, · · · , xn) ∈ Qn) we

define H(x) = max(H(x1), · · · ,H(xn)).

For Z ⊂ Rn, and for T > 0 we

define the counting function N(Z ,T ) :=
∣∣{x ∈ Z ∩Qn : H(x) ≤ T}

∣∣.
Model Theory: o-minimal structures on Rn

A structure S on {Rn : n ∈ N} consists of Boolean algebras of subsets
Sn ⊂ 2R

n
closed under taking Cartesian products and coordinate projec-

tions, s.t. Diag(R× R) ∈ S2, and, Graph(+), Graph(×) ∈ S3. S is
called o-minimal if S1 consists of finite unions of intervals and
points. Ran,exp is the minimal S including subanalytic sets and
Graph(exp), and it is o-minimal (Dries-Miller 1994). Any member (called
definable set) in an o-minimal S has finitely many connected components.

Theorem (Pila-Wilkie, Duke J. 2006)

Let Z ⊂ Rn be a definable subset in a given o-minimal structure. Then,
N(Z − Z alg,T ) = T o(1), i.e.,

∣∣Z − Z alg
∣∣ grows subpolynomially.
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Sn ⊂ 2R

n
closed under taking Cartesian products and coordinate projec-

tions, s.t. Diag(R× R) ∈ S2, and, Graph(+), Graph(×) ∈ S3. S is
called o-minimal if S1 consists of finite unions of intervals and
points. Ran,exp is the minimal S including subanalytic sets and
Graph(exp), and it is o-minimal (Dries-Miller 1994).

Any member (called
definable set) in an o-minimal S has finitely many connected components.

Theorem (Pila-Wilkie, Duke J. 2006)

Let Z ⊂ Rn be a definable subset in a given o-minimal structure. Then,
N(Z − Z alg,T ) = T o(1), i.e.,

∣∣Z − Z alg
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A generalized Lelong monotonicity formula

Proposition

Let ϕ be an unbounded C∞ strictly psh exhaustion fct on a Stein manifold

X . Let F : R→ R be strictly increasing s.t. ψ := F ◦ ϕ is weakly psh. Let

S be a closed positive (p, p)-current on X , 0 < p < dim(X ). Then,

hS ,ϕ(T ) := F ′(T )n−p

∫
{ϕ<T}

S ∧ (
√
−1∂∂ϕ)n−p

is a monotonically increasing nonnegative function in T .

Corollary (rough form of Theorem (Hwang-To 2002))

Let (Ω, ds2
Ω) be a BSD equipped with its Bergman metric, and denote by

B(x0; r) its geodesic ball of radius r centered at x0 ∈ Ω. Let V ⊂ Ω be an

irr. complex analytic subvariety, dimC V > 0, passing through x0. Then,

∃λ = λΩ and C = CΩ > 0 such that Volume (B(x0; r)) ≥ Ceλr .
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Geometric applications of Lelong formulas

1 Lelong’s original formula was for closed positive (p, p)-currents on
Cn, in which one considers the psh function ϕ = ‖z‖2. In this case
ψ := logϕ = log ‖z‖2 is weakly psh, F (T ) = log(T ).

2 In the case Bn with potential function ϕ = −(n + 1) log
(
1− ‖z‖2

)
for the Bergman metric d(0; z) ∼ ϕ(z), ∃c2 > c1 > 0 such that
{ϕ < c1r} ⊂ B(0; r) ⊂ {ϕ < c2r}. Take F (T ) = −e−αT . We can
check that ∃α > 0 such that for ψ := F ◦ ϕ = −e−αϕ,

√
−1∂∂ψ ≥ 0.

For this we check
√
−1∂∂ϕ ≥ α∂ϕ ∧ ∂ϕ. For a BSD Ω, one uses

ϕ(z) = log KΩ(z , z), KΩ = Bergman Kernal of Ω.
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Ax-Lindemann Theorem for Rank-1 Lattices

Theorem (Mok [Mo19, Compositio Math.])

Let n ≥ 2 and Γ ⊂ Aut(Bn) be a not necessarily arithmetic torsion-free

lattice. Write XΓ := Bn/Γ, π : Ω→ XΓ for the uniformization map. Let

Z ⊂ Ω be an irreducible algebraic subset and denote by

Z = π(Z )
Zar ⊂ XΓ be the Zariski closure of image of Z under the

uniformization map in the quasi-projective variety XΓ. Then, Z ⊂ XΓ is a

totally geodesic subset.

(a) We have Bn ⊂ Pn, Z as an open subset of an algebraic Ẑ ⊂ Pn

Consider [Ẑ ] as a member of an irreducible component K of the

Chow scheme Chow(Pn), with associated fiber bundle µ : U → Pn.

Restrict U to Bn and take quotients wrt Γ to get µΓ : UΓ → XΓ.

Prove that UΓ is algebraic by means of L2-estimates of ∂.
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AL Theorem for Rank-1 Lattices (cont.)

(b) Let Z̃ be an irreducible component of π−1
Γ (Z ). Then, at a good

point b ∈ ∂Z̃ , Z̃ extends across b as the union of an analytic

family of algebraic subvarieties of Pn. Let D be a germ of complex

submanifold at b grafted to extend Z̃ analytically across b.

(c) D ∩ Bn is a local strictly peudoconvex manifold with smooth

boundary, and by Klembeck [Kl87] D ∩ Bn is asymptotically of

constant holomorphic sectional curvature −2, hence asymptoti-

cally totally geodesic.

(d) By rescaling using elements γ ∈ π1(Z ) ↪→ π1(XΓ) ∼= Γ, it follows that

Π is of constant holomorphic sectional curvature −2, hence

totally geodesic.
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Compactification Theorem by L2-estimates of ∂

Theorem (Mok-Zhong [MZ89, Ann. Math.])

Let (X , g) be a complete Kähler manifold. Assume that Vol(X , g) <∞,

‖Sectional Curvature(X , g)‖ <∞, and that X has finite topology.

Suppose there exists a Hermitian holomorphic line bundle (E , h) of

pinched positive curvature. For k > 0, denote by N (X ,E k ) the space

of holomorphic sections s ∈ Γ(X ,E k) of the Nevanlinna class, i.e., s

satisfies
∫

X max(log ‖s‖hk , 0) <∞. Then, dim(N (X ,E k)) <∞ for all

k ≥ 0. Moreover, there exists some positive integer k such that

N (X ,E k) has no base points and it embeds X into P
(
N (X ,E k )∗)

realizing X as a quasi-projective manifold.
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Earlier Ax-Schanuel-type results

Ax-Schanuel Theorem

Theorem (Ax71, Annals) Let f1, · · · , fn ∈ C[[z1, · · · , zm]] be Q-linearly
independent formal power series with no constant terms.

Then,

trans.deg.CC
(
f1, · · · , fn; e2πıf1 , · · · , e2πıfn

)
≥ n + rank

(
∂fi
∂zj

)
.

1 The case of formal power series is reducible to that of convergent
power series, by Seidenberg, hence to considering the restriction of
functions to a germ of complex submanifold (V ; 0) ⊂ (Cm; 0).

2 Let U ⊂ Cn × (C∗)n be the graph of V above under the exponential
map. The hypothesis implies that the projection of U to (C∗)n is
not contained in any proper algebraic subgroup.

Ax-Schanuel for the j-function

Pila-Tsimerman [PT16] proved an analogue of Ax-Schanuel for the
Cartesian product Hn of upper half-planes, replacing the exponential
function by j : H → C, thus considering C(f1, · · · , fn; j ◦ f1, · · · , j ◦ fn).
They also proved an analogue involving at the same time j ′ and j ′′.
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Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let Ω b CN be a bounded symmetric domain, Γ ⊂ Aut(Ω) be an

arithmetic lattice, and write XΓ := Ω/Γ, as a quasi-projective variety. Let

W ⊂ Ω× XΓ be an algebraic subvariety. Let D ⊂ Ω× XΓ be the graph of

the uniformization map πΓ : Ω→ XΓ, and U be an irreducible

component of W ∩ D whose dimension is larger than expected,

i.e.,

codimU < codim(W ) + codim(D),

the codimensions being in Ω× XΓ, or, equivalently,

dim(U) > dim(W )− dim(XΓ).

Then, the projection of U to XΓ is contained in a totally geodesic

subvariety Y ( XΓ.

Ngaiming Mok (HKU) Complex Function Fields August 19, 2022 26 / 40



Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let Ω b CN be a bounded symmetric domain, Γ ⊂ Aut(Ω) be an

arithmetic lattice, and write XΓ := Ω/Γ, as a quasi-projective variety. Let

W ⊂ Ω× XΓ be an algebraic subvariety. Let D ⊂ Ω× XΓ be the graph of

the uniformization map πΓ : Ω→ XΓ, and U be an irreducible

component of W ∩ D whose dimension is larger than expected, i.e.,

codimU < codim(W ) + codim(D),

the codimensions being in Ω× XΓ, or, equivalently,

dim(U) > dim(W )− dim(XΓ).

Then, the projection of U to XΓ is contained in a totally geodesic

subvariety Y ( XΓ.

Ngaiming Mok (HKU) Complex Function Fields August 19, 2022 26 / 40



Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let Ω b CN be a bounded symmetric domain, Γ ⊂ Aut(Ω) be an

arithmetic lattice, and write XΓ := Ω/Γ, as a quasi-projective variety. Let

W ⊂ Ω× XΓ be an algebraic subvariety. Let D ⊂ Ω× XΓ be the graph of

the uniformization map πΓ : Ω→ XΓ, and U be an irreducible

component of W ∩ D whose dimension is larger than expected, i.e.,

codimU < codim(W ) + codim(D),

the codimensions being in Ω× XΓ, or, equivalently,

dim(U) > dim(W )− dim(XΓ).

Then, the projection of U to XΓ is contained in a totally geodesic

subvariety Y ( XΓ.
Ngaiming Mok (HKU) Complex Function Fields August 19, 2022 26 / 40



Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice Γ ⊂ Aut(Ω), π : Ω→ XΓ. Modular functions are

Γ-invariant meromorphic functions descending to rational functions on XΓ.

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let V ⊂ Ω be an irreducible complex analytic subvariety, not contained

in any weakly special subvariety E ( Ω. Let (zi )1≤i≤n be algebraic

coordinates on Ω, {ϕ1, . . . , ϕN} be a basis of modular functions. Then,

trans.deg.CC
(
{zi}, {φj}

)
≥ n + dim V ,

where all φj are assumed defined at some point on V and restricted to V .

1 We may take the algebraic coordinates (z1, · · · , zn) to be the
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Tame complex geometry

The Definable Remmert-Stein Theorem

Theorem (Peterzil-Starchenko [Proc. ICM 2010]) Let M be a definable

complex manifold and E a definable complex analytic subset of M. Let A

be a definable, complex analytic subset of M − E . Then, its topological

closure A is a complex analytic subset of M.

The Definable Chow Theorem

Theorem (Peterzil-Starchenko, variation of [Proc. ICM 2010]) Let Y be

a quasi-projective algebraic variety. Let A ⊂ Y be definable, complex

analytic, and closed in Y . Then, A is algebraic.
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Ax-Schanuel for variations of Hodge structures

Theorem (Bakker-Tsimerman, Invent. Math. 2019)

Let X be a nonsingular quasi-projective manifold underlying a polarized

integral variation of Hodge structures, D be the associated period

domain, D ⊂ Ď the standard embedding of D into its dual Ď , which is a

rational homogeneous manifold.

Let W be the graph of the period map

ϕ : X → D/Γ, where Γ ⊂ Aut(D) is the image of the monodromy

representation of π1(X ), assumed to be torsion-free. Let V ⊂ X × Ď be an

algebraic subset and U be an irreducible component of V ∩W satisfying

codimX×Ď(U) < codimX×Ď(V ) + codimX×Ď(W ).

Then, the canonical projection of U to X is contained in a proper weak

Mumford-Tate subvariety.
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A key ingredient for the generalization of Ax-Schanuel in the context of

variations of Hodge structures was a volume growth estimate established

by Bakker-Tsimerman for subvarieites generalizing that of Hwang-To.

They achieved this by adapting the Lelong monotonicity formula.

Ax-Schanuel for the rank-1 case (Baldi-Ullmo)

Ax-Schanuel for the rank-1 case was recently proven by Baldi-

Ullmo. Given any torsion-free lattice Γ ⊂ Aut(Bn), n ≥ 2, the lattice,

though not necessarily arithmetic, must be integral in some precise way,

and they embed XΓ = Bn/Γ via some period map into D/Γ and

exploit atypcial intersection on D/Γ′, proving Ax-Schanuel for XΓ by

means of Bakker-Tsimerman’s Ax-Schanuel Theorem for period domains.

For finite-volume quotients of reducible bounded symmetric domains

Ω = Ω1 × · · · × Ωm Ax-Schanuel remains unsolved. Especially, when

there exist 1-dimensional factors Ωi in general the counting

argument of Pila-Wilkie no longer works.
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Algebraic subsets of a BSD invariant under cocompact Γ̌

Proposition 1 (Chan-Mok, JDG 2021) Let D and Ω be BSD,
Φ : Aut0(D)→ Aut0(Ω) be a group homomorphism, F : D → Ω be a
Φ-equivariant holomorphic map. Then, F is totally geodesic.

Theorem (Chan-Mok, JDG 2021)

Let Ω b CN be a bounded symmetric domain in its Harish-Chandra
realization, and Z ⊂ Ω be an algebraic subset. Suppose there exists a
torsion-free discrete subgroup Γ̌ ⊂ Aut(Ω) such that Γ̌ stabilizes Z and
Z/Γ̌ is compact. Then, Z ⊂ Ω is totally geodesic.

Corollary (Chan-Mok, JDG 2021)

Let Γ ⊂ Aut(Ω) be a torsion-free cocompact lattice acting on Ω b CN ,
XΓ := Ω/Γ, π : Ω→ XΓ the uniformization map. Let Y ⊂ XΓ be an
irreducible subvariety, and Z ⊂ Ω be an irreducible component of π−1(Y ).
Suppose Z ⊂ Ω is an algebraic subset. Then, Z ⊂ Ω is totally geodesic.
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Asymptotic Total Geodesy of Embedded Poincaré Disks

Theorem (Chan-Mok [CM21], JDG)

Let f : (∆, λds2
∆)→ (Ω, ds2

Ω) be a holomorphic isometric embedding,

where λ is a positive real constant and Ω b CN is a bounded symmetric

domain in its Harish-Chandra realization.

Then, f is asymptotically

totally geodesic at a general point b ∈ ∂∆.

Theorem implies Proposition 1 by slicing D by totally geodesic disks.

Embedded Poincaré Disks with Aut(Ω)-equiv. Tangents

Proposition 2 Let f0 : (∆, λ ds2
∆)→ (Ω, ds2

Ω) be a holomorphic

isometric embedding. Suppose Z0 := f0(∆) ⊂ Ω is not asymptotically

totally geodesic at a generic point b ∈ ∂Z0. Then, ∃ a holomorphic

isometric embedding f : (∆, λ ds2
∆)→ (Ω, ds2

Ω), f (∆) =: Z such that

(†) All tangent lines Tx (Z ), x ∈ Z , are equivalent under Aut(Ω).

Proof by rescaling: Compose with γi ∈ Aut(Ω) and take limits.

Ngaiming Mok (HKU) Complex Function Fields August 19, 2022 32 / 40



Asymptotic Total Geodesy of Embedded Poincaré Disks
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Total Geodesy of Certain Curves on Tube Domains

Proposition 3

Let Ω be an irreducible bounded symmetric domain of tube type and of
rank r ; Z ⊂ Ω be a local holomorphic curve with Aut(Ω)-equivalent
tangent planes spanned by vectors of rank r . Then, Z ⊂ Ω is totally
geodesic and of rank r (i.e. of diagonal type).

Proof. π : PTΩ → Ω, L→ PTΩ tautological line bundle.

[S ] ∼= L−r ⊗ π∗E 2, E dual to O(1) on the compact dual M of Ω.

(2π)−1
√
−1∂∂ log ‖s‖2 = rc1(L, ĝ0)− 2c1(π∗E , π∗h0),

where ĝ0 and h0 are canonical metrics. ‖s(x)‖ only depends on the

Aut(Ω)-isomorphism type of Tx (Ω). Thus, ‖s‖ = constant on Z . Hence,

0 = rc1(L, ĝ0)− 2c1(π∗E , π∗h0).

⇔ Gauss curvature K (x) = −2/r , and σ ≡ 0. �
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where ĝ0 and h0 are canonical metrics. ‖s(x)‖ only depends on the

Aut(Ω)-isomorphism type of Tx (Ω). Thus, ‖s‖ = constant on Z .

Hence,
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where ĝ0 and h0 are canonical metrics. ‖s(x)‖ only depends on the

Aut(Ω)-isomorphism type of Tx (Ω). Thus, ‖s‖ = constant on Z . Hence,
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Bi-algebraicity by means of Nadel’s Theorem

Maps inducing the representation θ : Γ̌ ↪→ H0 ⊂ G0 = Aut0(Ω)

Without loss of generality assume Ω ⊃ Z smallest BSD containing
Z , ı : Y ↪→ ZΓ̌, θ := ı∗π1(Y ) = Γ̌ ⊂ H0. By the proof of Nadel’s
Theorem, H0 is a semisimple Lie group without compact factors
acting on Ω.

Write L ⊂ H0 for a maximal compact subgroup. Let
f : Y → Γ̌\H0/L =: SΓ̌ ↪→ XΓ̌ be any smooth map inducing θ. Since
(Ω, ds2

Ω) is a Cartan-Hadamard manifold, i.e., a simply connected
complete Riemannian manifold of nonpositive sectional curvature,
the center of gravity argument gives a point x ∈ Ω fixed by L.
Regard H0/L as the orbit H0x ⊂ Ω = G0/K , L ⊂ K = Isotx (Ω, ds2

Ω),
hence SΓ̌ ↪→ XΓ̌ := Γ̌\Ω = Γ̌\G/K as a real analytic submanifold.
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Proposition 1 ⇒ Total Geodesy of Z ⊂ Ω

Since XΓ̌ is a K (π, 1), the two smooth maps ı, f : Y → XΓ̌ inducing

the representation θ are homotopic to each other.

Denote by ω the Kähler form of the canonical KE metric on XΓ̌. H0 acts
on Ω. For any x ∈ X , we have

dimR(SΓ̌) ≤ dimR(H0x) ≤ dimR Z = dimR Y := 2m.

By homotopy
∫

Y (ı∗ω)m =
∫

Y (f ∗ω)m. The first integral gives
m!Vol(Y , ω|Y ) > 0. A contradiction would arise if we had strict
inequality of dimensions. Hence, equality holds, Z is homogeneous
under H0, and H0 is of Hermitian type. Thus, Z ⊂ Ω is the image of an
equivariant holomorphic map between bounded symmetric domains.
By Proposition 1, Z ⊂ Ω is totally geodesic.
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Existential Closedness Problem

The original Existential Closedness Problem, raised by Zilber, asks for a

minimal set of conditions on an algebraic subvariety of V ⊂ Cn × (C ∗)n to

guarantee that V ∩Graph(exp) is Zariski dense in V . It ties up with the

André-Oort and the Zilber-Pink conjectures in Diophantine geometry.

ECP for Shimura Varieties

Theorem (Eterovic-Zhao 2021) Let Ω b CN be a bounded symmetric
domain in its Harish-Chandra realization, and Γ ⊂ Aut(Ω) be a torsion-
free arithmetic lattice. Write XΓ := Ω/Γ, identified as a Zariski open
subset XΓ ⊂ XΓ of its minimal (projective) compactification XΓ, and
denote by q : Ω→ XΓ the uniformization map. Write π1 : CN × XΓ → CN

for the canonical projection map onto the first Cartesian factor.
Let now V ⊂ CN × XΓ be an irreducible algebraic subvariety such
that π1(V ) is Zariski dense in CN . Then, π1(V ∩Graph(q)) is Zariski
dense in CN , and V ∩Graph(q) is Zariski dense in V .

The proof involves studying the Shilov boundary of Ω b CN .
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