Complex Differential Geometry in the Solution of Arithmetico-Geometric Problems over Complex Function Fields

Ngaiming Mok

The University of Hong Kong

Conference on Several Complex Variables Shanghai University Shanghai, China

August 19, 2022

Moduli Space of Elliptic Curves

An elliptic curve is complex-analytically a compact Riemann surface *S* of genus 1. In other words, $S := \mathbb{C}/L$ for some lattice $L \subset \mathbb{C}$. Replacing *L* by λL for some $\lambda \in \mathbb{C} - \{0\}$, without loss of generality we may assume $L_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$, $\operatorname{Im}(\tau) > 0$, i.e., $\tau \in \mathcal{H}$, where $\mathcal{H} := \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$, the upper half plane. Write $S_{\tau} := \mathbb{C}/L_{\tau}$.

Moduli Space of Elliptic Curves

An elliptic curve is complex-analytically a compact Riemann surface *S* of genus 1. In other words, $S := \mathbb{C}/L$ for some lattice $L \subset \mathbb{C}$. Replacing *L* by λL for some $\lambda \in \mathbb{C} - \{0\}$, without loss of generality we may assume $L_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$, $\operatorname{Im}(\tau) > 0$, i.e., $\tau \in \mathcal{H}$, where $\mathcal{H} := \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$, the upper half plane. Write $S_{\tau} := \mathbb{C}/L_{\tau}$.

For $\tau, \tau' \in \mathcal{H}$, we have $S_{\tau} \cong S_{\tau'}$ if and only if there exists $\lambda \in \mathbb{C}$, $\lambda \neq 0$ such that $L_{\tau'} = \lambda L_{\tau}$, i.e., if and only if $\tau' = \frac{a\tau+b}{c\tau+d}$ where $ad - bc \neq 0$. Thus, the set of equivalence classes of \mathbb{C}/L is in one-to-one correspondence with $X = X(1) := \mathcal{H}/\mathbb{P}SL(2,\mathbb{Z})$. $\mathbb{P}SL(2,\mathbb{Z})$ acts discretely on \mathcal{H} with fixed points. We have the *j*-function $j: X(1) \xrightarrow{\cong} \mathbb{C}$, and $\overline{X(1)} = \mathbb{P}^1$. An elliptic curve is complex-analytically a compact Riemann surface S of genus 1. In other words, $S := \mathbb{C}/L$ for some lattice $L \subset \mathbb{C}$. Replacing L by λL for some $\lambda \in \mathbb{C} - \{0\}$, without loss of generality we may assume $L_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$, $\operatorname{Im}(\tau) > 0$, i.e., $\tau \in \mathcal{H}$, where $\mathcal{H} := \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$, the upper half plane. Write $S_{\tau} := \mathbb{C}/L_{\tau}$.

For $\tau, \tau' \in \mathcal{H}$, we have $S_{\tau} \cong S_{\tau'}$ if and only if there exists $\lambda \in \mathbb{C}$, $\lambda \neq 0$ such that $L_{\tau'} = \lambda L_{\tau}$, i.e., if and only if $\tau' = \frac{a\tau+b}{c\tau+d}$ where $ad - bc \neq 0$. Thus, the set of equivalence classes of \mathbb{C}/L is in one-to-one correspondence with $X = X(1) := \mathcal{H}/\mathbb{P}SL(2,\mathbb{Z})$. $\mathbb{P}SL(2,\mathbb{Z})$ acts discretely on \mathcal{H} with fixed points. We have the *j*-function $j: X(1) \xrightarrow{\cong} \mathbb{C}$, and $\overline{X(1)} = \mathbb{P}^1$.

A suitable finite-index subgroup $\Gamma \subset \mathbb{P}SL(2,\mathbb{Z})$ acts on \mathcal{H} without fixed points and $X_{\Gamma} := \mathcal{H}/\Gamma$ can be compactified to a compact Riemann surface.

The *j*-function

On the upper half plane $\mathcal{H} = \{\tau : \operatorname{Im}(\tau) > 0\}$ define

$$j(\tau) = 1728 \frac{g_2(\tau)^3}{g_2(\tau)^3 - 27g_3(\tau)^2} = 1728 \frac{g_2(\tau)^3}{\Delta(\tau)}$$

where
$$g_2(\tau) = 60 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-4}; g_3(\tau) = 140 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-6}.$$

and $\Delta(\tau) := g_2(\tau)^3 - 27g_3(\tau)^2$ is the modular discriminant.

The *j*-function

On the upper half plane $\mathcal{H} = \{\tau : \operatorname{Im}(\tau) > 0\}$ define

$$j(\tau) = 1728 \frac{g_2(\tau)^3}{g_2(\tau)^3 - 27g_3(\tau)^2} = 1728 \frac{g_2(\tau)^3}{\Delta(\tau)}$$

where
$$g_2(\tau) = 60 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-4}; g_3(\tau) = 140 \sum_{(m,n) \neq (0,0)} (m+n\tau)^{-6}.$$

and $\Delta(\tau) := g_2(\tau)^3 - 27g_3(\tau)^2$ is the modular discriminant.

The *j*-function establishes a biholomorphism $j : \mathcal{H}/SL(2,\mathbb{Z}) \xrightarrow{\cong} \mathbb{C}$.

Ngaiming Mok (HKU)

Complex Function Fields

Invariant Kähler metrics on $\mathcal{H}\times\mathbb{C}$

On $\pi : \mathcal{H} \times \mathbb{C} \to \mathcal{H}$, there is the relative tangent bundle $V = T_{\pi}$, and the horizontal real-analytic integrable subbundle $H \subset T(\mathcal{H} \times \mathbb{C})$ whose leaves are images of **horizontal** sections $w = a + b\tau$, $a, b \in \mathbb{R}$. We have $T(\mathcal{H} \times \mathbb{C}) = V \oplus H$. There is a semi-Kähler form μ with kernel H so that, denoting by ω the Kähler form of the Poincaré metric on \mathcal{H} , and defining $\nu_t := \pi^* \omega + t^2 \mu$, t > 0, $(\mathcal{H} \times \mathbb{C}, \nu_t)$ is a Kähler form invariant under $SL(2,\mathbb{R}) \ltimes \mathbb{R}^2$. Let $\Gamma \subset SL(2,\mathbb{Z})$ be a torsion-free finite index subgroup. Write $X^0_{\Gamma} := \mathcal{H}/\Gamma$, $\mathcal{M}^0_{\Gamma} = (\mathcal{H} \times \mathbb{C})/(\Gamma \ltimes \mathbb{Z}^2)$, $\pi : \mathcal{M}_{\Gamma} \to X_{\Gamma}$ a compactification to a minimal elliptic surface over the projective curve X_{Γ} .

Verticality of a section

Let $\sigma: X_{\Gamma} \to \mathcal{M}_{\Gamma}$ be a holomorphic section and $d\sigma: TX_{\Gamma} \to \sigma^* T(\mathcal{M}_{\Gamma})$ be its differential. Define the *verticality* of σ as $\eta_{\sigma} := \Pi_{V} \circ d\sigma|_{T(X_{\Gamma}^{0})} : T(X_{\Gamma}^{0}) \to \sigma^* V$. Thus, η_{σ} is a real-analytic section of the holomorphic line bundle $T^*(X_{\Gamma}^{0}) \otimes \sigma^* V$ on X_{Γ}^{0} .

Shioda's Theorem: A differential-geometric proof

Proposition (geometric characterization of torsion sections)

 $\eta_{\sigma} \equiv 0$ if and only if σ is a torsion section.

Shioda's Theorem: A differential-geometric proof

Proposition (geometric characterization of torsion sections)

 $\eta_{\sigma} \equiv 0$ if and only if σ is a torsion section.

Shioda's Theorem (diff.-geom. proof by Mok (1991))

The Mordell-Well group of the elliptic curve E_{Γ} over $\mathbb{C}(X_{\Gamma})$ is finite.

Shioda's Theorem: A differential-geometric proof

Proposition (geometric characterization of torsion sections) $\eta_{\sigma} \equiv 0$ if and only if σ is a torsion section.

Shioda's Theorem (diff.-geom. proof by Mok (1991))

The Mordell-Well group of the elliptic curve E_{Γ} over $\mathbb{C}(X_{\Gamma})$ is finite.

Proof: Given a holomorphic section $\sigma : X_{\Gamma} \to \mathcal{M}_{\Gamma} \sigma$ corresponds to $f : \mathcal{H} \to \mathbb{C}$ satisfying $f(\gamma \tau) = \frac{f(\tau)}{c_{\gamma}\tau + d_{\gamma}} + A_{\gamma}(\gamma \tau) + B_{\gamma}$ for some integers A_{γ}, B_{γ} , in which $\gamma(\tau) = \frac{a_{\gamma}\tau + b_{\gamma}}{c_{\gamma} + d_{\gamma}}$. Then, $f''(\gamma \tau) = (c_{\gamma}\tau + d_{\gamma})^{3}f''(\tau)$. (Eichler) We discovered that $\xi_{\sigma} := f''(\tau)(d\tau)^{\frac{3}{2}}$ is actually given by $\xi_{\sigma} = \nabla \eta_{\sigma}$. We have $\overline{\partial}\xi_{\sigma} = 0$, hence $\overline{\partial}\nabla \eta_{\sigma} = 0$. Interchanging the order of differention we have $\overline{\nabla}^{*}\overline{\nabla}\eta_{\sigma} = -\eta_{\sigma}$. Integrating by parts we get $\int_{X_{\Gamma}} \|\eta_{\sigma}\|^{2}\omega = -\int_{X_{\Gamma}} \|\overline{\nabla}\eta_{\sigma}\|^{2}\omega$, forcing $\eta_{\sigma} \equiv 0$, hence σ is a torsion section.

Betti coordinates

On $\mathcal{H} \times \mathbb{C}$, for a point (τ, w) , express w in terms of a basis of the lattice L_{τ} , e.g., $w = \beta_1 \cdot 1 + \beta_2 \tau$. The pair (β_1, β_2) are Betti coordinates.

Betti coordinates

On $\mathcal{H} \times \mathbb{C}$, for a point (τ, w) , express w in terms of a basis of the lattice L_{τ} , e.g., $w = \beta_1 \cdot 1 + \beta_2 \tau$. The pair (β_1, β_2) are Betti coordinates.

The Betti map associated to a holomorphic section σ

For a holomorphic section $\sigma : X_{\Gamma} \to \mathcal{M}_{\Gamma}$, the local pullback $\beta := (\sigma^* \beta_1, \sigma^* \beta_2)$ is called the *Betti map* of σ . Since the construction of (β_1, β_2) involves a choice of abelian logarithm on \mathcal{M}_{Γ}^0 , so does the Betti map β , but the vanishing order of β at any point $b \in B^0$ is independent of such choice and is intrinsic to the section σ . The following definition is due to Corvaja-Demeio-Masser-Zannier.

The Betti multiplicity of a Betti map at a finite point

The *multiplicity* of a Betti map β at *b* is defined to be the smallest positive integer m(b) such that the partial derivatives of $\sigma^*\beta_1, \sigma^*\beta_2$ at *b* vanish up to order m(b) - 1. We will also call m(b) the Betti multiplicity of σ at *b*.

The following definition is due to Corvaja-Demeio-Masser-Zannier.

The Betti multiplicity of a Betti map at a finite point

The *multiplicity* of a Betti map β at *b* is defined to be the smallest positive integer m(b) such that the partial derivatives of $\sigma^*\beta_1, \sigma^*\beta_2$ at *b* vanish up to order m(b) - 1. We will also call m(b) the Betti multiplicity of σ at *b*.

The Betti multiplicity of a Betti map at a cusp

When a holomorphic section σ cuts over a base point c of bad reduction, i.e., corresponding to a cusp, we express the section σ locally near the cusp c in terms of toroidal compactification $\Sigma(w) = (\xi(w), \zeta(w))$ If $|\xi(0)| = 1$, then we define the Betti multiplicity m_c of σ at c to be the vanishing order of $\xi(w) - \xi(0)$ at w = 0. Otherwise, we define $m_c = 1$.

Betti Multiplicities for a Section of an Elliptic Surface

Theorem (Ulmer-Ursúa IMRN 2021)

Suppose $\pi: \mathcal{E} \to B$ is a non-isotrivial minimal elliptic surface, with exactly δ singular fibers, and $\sigma: B \to \mathcal{E}$ be a section of infinite order. Denote by g be the genus of B. Let O denote the zero section of \mathcal{E} and denote by d the degree of the holomorphic line bundle $O^*\Omega^1_{\mathcal{E}|C}$, where $\Omega^1_{\mathcal{E}|C}$ denotes the dual of the relative tangent bundle. Denote by $S \subset B$ the set of base points of singular fibers, and write $B^0 := B - S$. Then,

 $\sum_{b\in B^0}(m_b-1)\leq 2g-2-d+\delta$.

Betti Multiplicities for a Section of an Elliptic Surface

Theorem (Ulmer-Ursúa IMRN 2021)

Suppose $\pi : \mathcal{E} \to B$ is a non-isotrivial minimal elliptic surface, with exactly δ singular fibers, and $\sigma : B \to \mathcal{E}$ be a section of infinite order. Denote by g be the genus of B. Let O denote the zero section of \mathcal{E} and denote by d the degree of the holomorphic line bundle $O^*\Omega^1_{\mathcal{E}|C}$, where $\Omega^1_{\mathcal{E}|C}$ denotes the dual of the relative tangent bundle. Denote by $S \subset B$ the set of base points of singular fibers, and write $B^0 := B - S$. Then,

 $\sum_{b\in B^0}(m_b-1)\leq 2g-2-d+\delta$.

(a) The finiteness of points of B^0 with multiplicities ≥ 2 was due to Corvaja-Demeio-Masser-Zannier (*Crelles* 2022)

(b) Multiplities m_c at cusps were defined algebraically and using the Kodaira classification of elliptic surfaces, and the analytic definition of Mok-Ng using toroidal coordinates agree with the algebraic definition. Equality was proven when the sum on the left hand side is replaced by taking all b ∈ B, including the cusps.

Ngaiming Mok (HKU)

Complex Function Fields

Diff.-geom. proof for estimates on Betti multiplicities

Theorem (Mok-Ng 2022)

Let $\mathcal{E} \to B$ be an elliptic surface over a projective curve B with a classifying map $f : B \to X$ of degree d, where $X = X_{\Gamma(k)}$ for some $k \ge 3$. Let σ be a non-torsion section of \mathcal{E} and m_b be the Betti multiplicity of σ at b, then

$$\sum_{b\in B}(m_b-1)=\sum_{b\in B\setminus S}(r_b-1)+rac{d}{2\pi}\int_{X^0}\omega,$$

where $X^0 = X^0_{\Gamma(k)}$ and $S = f^{-1}(X \setminus X^0)$; r_b is the ramification index of f at b and ω is the Kähler form on X^0 descending from the invariant form $-i\partial\bar{\partial} \log \mathrm{Im}\tau$ on \mathcal{H} .

Diff.-geom. proof for estimates on Betti multiplicities

Theorem (Mok-Ng 2022)

Let $\mathcal{E} \to B$ be an elliptic surface over a projective curve B with a classifying map $f : B \to X$ of degree d, where $X = X_{\Gamma(k)}$ for some $k \ge 3$. Let σ be a non-torsion section of \mathcal{E} and m_b be the Betti multiplicity of σ at b, then

$$\sum_{b\in B}(m_b-1)=\sum_{b\in B\setminus S}(r_b-1)+rac{d}{2\pi}\int_{X^0}\omega,$$

where $X^0 = X^0_{\Gamma(k)}$ and $S = f^{-1}(X \setminus X^0)$; r_b is the ramification index of f at b and ω is the Kähler form on X^0 descending from the invariant form $-i\partial\bar{\partial} \log \mathrm{Im}\tau$ on \mathcal{H} .

The general case can be reduced to the case with classifying maps.

Diff.-geom. proof for estimates on Betti multiplicities

Theorem (Mok-Ng 2022)

Let $\mathcal{E} \to B$ be an elliptic surface over a projective curve B with a classifying map $f : B \to X$ of degree d, where $X = X_{\Gamma(k)}$ for some $k \ge 3$. Let σ be a non-torsion section of \mathcal{E} and m_b be the Betti multiplicity of σ at b, then

$$\sum_{b\in B}(m_b-1)=\sum_{b\in B\setminus S}(r_b-1)+rac{d}{2\pi}\int_{X^0}\omega,$$

where $X^0 = X^0_{\Gamma(k)}$ and $S = f^{-1}(X \setminus X^0)$; r_b is the ramification index of fat b and ω is the Kähler form on X^0 descending from the invariant form $-i\partial\partial \log \mathrm{Im}\tau$ on \mathcal{H} .

The general case can be reduced to the case with classifying maps.

Corollary

Denote by \mathfrak{B}_{σ} the divisor of points on B^0 over which the Betti multiplicity $m_b \geq 2$, with weight $m_b - 1$ at each of these points. We have $|\mathfrak{B}_{\sigma}| \leq 2g - 2 - \deg(f^*(K_X \otimes S_X)^{\frac{1}{2}})) + |S|$, where g is the genus of B. 9 / 40

Main Theorem (Mok-To (*Crelles* 1991))

Let $\pi : \mathscr{A}_{\Gamma} \to X_{\Gamma}$ be a Kuga family of polarized abelian varieties without locally constant parts, $\overline{\pi} : \overline{\mathscr{A}_{\Gamma}} \to \overline{X_{\Gamma}}$ be a projective compactification which is a geometic model for the associated modular polarized abelian variety A_{Γ} over $\mathbb{C}(\overline{X_{\Gamma}})$. Then, there are at most a finite number of meromorphic sections of $\overline{\mathscr{A}_{\Gamma}}$ over $\overline{X_{\Gamma}}$, *i.e.*, $\operatorname{rank}_{\mathbb{Z}}(A_{\Gamma}(\mathbb{C}(\overline{X_{\Gamma}}))) = 0$ for the Mordell-Weil group $A_{\Gamma}(\mathbb{C}(\overline{X_{\Gamma}}))$.

Main Theorem (Mok-To (*Crelles* 1991))

Let $\pi : \mathscr{A}_{\Gamma} \to X_{\Gamma}$ be a Kuga family of polarized abelian varieties without locally constant parts, $\overline{\pi} : \overline{\mathscr{A}_{\Gamma}} \to \overline{X_{\Gamma}}$ be a projective compactification which is a geometic model for the associated modular polarized abelian variety A_{Γ} over $\mathbb{C}(\overline{X_{\Gamma}})$. Then, there are at most a finite number of meromorphic sections of $\overline{\mathscr{A}_{\Gamma}}$ over $\overline{X_{\Gamma}}$, *i.e.*, $\operatorname{rank}_{\mathbb{Z}}(A_{\Gamma}(\mathbb{C}(\overline{X_{\Gamma}}))) = 0$ for the Mordell-Weil group $A_{\Gamma}(\mathbb{C}(\overline{X_{\Gamma}}))$.

Mordell-Weil group for $f: B \rightarrow X_{\Gamma}$ dominant and equidimensional

Theorem(Mok 1991) Let $\Gamma \subset \operatorname{Sp}(g, \mathbb{Z})$ be torsion-free. Suppose dim $(B) = \dim(X_{\Gamma})$ and $f : B \to X_{\Gamma}$ is a dominant classifying map. Denote by A_f the elliptic curve over $\mathbb{C}(\overline{B})$ obtained by pulling back the universal abelian variety A_{Γ} over $\mathbb{C}(\overline{X_{\Gamma}})$ by the classifying map f. Then,

 $\operatorname{rank}_{\mathbb{Z}} A_f(\mathbb{C}(\overline{B})) \leq C \cdot \operatorname{Volume}(R_f, \omega),$

where ω is the Kähler-Einstein (1,1)-form on X_{Γ} , C is a universal constant depending only on X_{Γ} , and R_f is the ramification divisor $f : B \to X_{\Gamma}$.

Ngaiming Mok (HKU)

Complex Function Fields

 $L \subset \mathbb{C}^n$ lattice, $\mathbb{C}/L = A \cong S^1 \times \cdots \times S^1$ (2g copies), $H^1(A, \mathbb{R}) \cong \mathbb{R}^{2g}$ first de Rham cohomology group. *A* is called an Abelian variety if $A \hookrightarrow \mathbb{P}^N$ is (projective)-algebraic.

 $L \subset \mathbb{C}^n$ lattice, $\mathbb{C}/L = A \cong S^1 \times \cdots \times S^1$ (2g copies), $H^1(A, \mathbb{R}) \cong \mathbb{R}^{2g}$ first de Rham cohomology group. *A* is called an Abelian variety if $A \hookrightarrow \mathbb{P}^N$ is (projective)-algebraic.

A (principally polarized) Abelian variety corresponds to an *n*-by-*n* matrix τ obeying **Riemann bilinear relations (a)** τ **is symmetric, (b)** $\text{Im}(\tau) > 0$.

 $L \subset \mathbb{C}^n$ lattice, $\mathbb{C}/L = A \cong S^1 \times \cdots \times S^1$ (2g copies), $H^1(A, \mathbb{R}) \cong \mathbb{R}^{2g}$ first de Rham cohomology group. *A* is called an Abelian variety if $A \hookrightarrow \mathbb{P}^N$ is (projective)-algebraic.

A (principally polarized) Abelian variety corresponds to an *n*-by-*n* matrix τ obeying **Riemann bilinear relations (a)** τ **is symmetric, (b)** $\operatorname{Im}(\tau) > 0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots, \tau_{g}$ of $\tau, A_{\tau} := \mathbb{C}^{g}/L_{\tau}$. $\mathcal{H}_{g} := \{\tau \in M_{g}(\mathbb{C}) : \tau^{t} = \tau; \operatorname{Im}(\tau) > 0\}$. The Cayley transform $\kappa(\tau) = (\tau - \imath I_{g})(\tau + \imath I_{g})^{-1}$ gives a biholomorphism $\kappa : \mathcal{H}_{g} \xrightarrow{\cong} D_{g}^{III} = \{Z \in M_{g}(\mathbb{C}) : Z^{t} = Z, I - \overline{Z}Z > 0\}$ with a BSD.

 $L \subset \mathbb{C}^n$ lattice, $\mathbb{C}/L = A \cong S^1 \times \cdots \times S^1$ (2g copies), $H^1(A, \mathbb{R}) \cong \mathbb{R}^{2g}$ first de Rham cohomology group. *A* is called an Abelian variety if $A \hookrightarrow \mathbb{P}^N$ is (projective)-algebraic.

A (principally polarized) Abelian variety corresponds to an *n*-by-*n* matrix τ obeying **Riemann bilinear relations (a)** τ **is symmetric, (b)** $\operatorname{Im}(\tau) > 0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots, \tau_{g}$ of $\tau, A_{\tau} := \mathbb{C}^{g}/L_{\tau}$. $\mathcal{H}_{g} := \{\tau \in M_{g}(\mathbb{C}) : \tau^{t} = \tau; \operatorname{Im}(\tau) > 0\}$. The Cayley transform $\kappa(\tau) = (\tau - \imath I_{g})(\tau + \imath I_{g})^{-1}$ gives a biholomorphism $\kappa : \mathcal{H}_{g} \xrightarrow{\simeq} D_{g}^{III} = \{Z \in M_{g}(\mathbb{C}) : Z^{t} = Z, I - \overline{Z}Z > 0\}$ with a BSD.

We have a Hodge decomposition $H^1(A, \mathbb{C}) = H^0(A, \Omega_A) \oplus H^1(A, \mathcal{O}_A)$ in terms of $\overline{\partial}$ -cohomology and harmonic forms.

 $L \subset \mathbb{C}^n$ lattice, $\mathbb{C}/L = A \cong S^1 \times \cdots \times S^1$ (2g copies), $H^1(A, \mathbb{R}) \cong \mathbb{R}^{2g}$ first de Rham cohomology group. *A* is called an Abelian variety if $A \hookrightarrow \mathbb{P}^N$ is (projective)-algebraic.

A (principally polarized) Abelian variety corresponds to an *n*-by-*n* matrix τ obeying **Riemann bilinear relations (a)** τ **is symmetric, (b)** $\operatorname{Im}(\tau) > 0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots, \tau_{g}$ of $\tau, A_{\tau} := \mathbb{C}^{g}/L_{\tau}$. $\mathcal{H}_{g} := \{\tau \in M_{g}(\mathbb{C}) : \tau^{t} = \tau; \operatorname{Im}(\tau) > 0\}$. The Cayley transform $\kappa(\tau) = (\tau - \imath I_{g})(\tau + \imath I_{g})^{-1}$ gives a biholomorphism $\kappa : \mathcal{H}_{g} \xrightarrow{\cong} D_{g}^{III} = \{Z \in M_{g}(\mathbb{C}) : Z^{t} = Z, I - \overline{Z}Z > 0\}$ with a BSD.

We have a Hodge decomposition $H^1(A, \mathbb{C}) = H^0(A, \Omega_A) \oplus H^1(A, \mathcal{O}_A)$ in terms of $\overline{\partial}$ -cohomology and harmonic forms.

 $\operatorname{Sp}(g; \mathbb{R})$ acts on \mathcal{H}_g as hol. isometries. The arithmetic subgroup $\operatorname{Sp}(g; \mathbb{Z}) \subset \operatorname{Sp}(g; \mathbb{R})$ acts on \mathcal{H}_g as a discrete group.

 $L \subset \mathbb{C}^n$ lattice, $\mathbb{C}/L = A \cong S^1 \times \cdots \times S^1$ (2g copies), $H^1(A, \mathbb{R}) \cong \mathbb{R}^{2g}$ first de Rham cohomology group. *A* is called an Abelian variety if $A \hookrightarrow \mathbb{P}^N$ is (projective)-algebraic.

A (principally polarized) Abelian variety corresponds to an *n*-by-*n* matrix τ obeying **Riemann bilinear relations (a)** τ **is symmetric, (b)** $\operatorname{Im}(\tau) > 0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots, \tau_{g}$ of $\tau, A_{\tau} := \mathbb{C}^{g}/L_{\tau}$. $\mathcal{H}_{g} := \{\tau \in M_{g}(\mathbb{C}) : \tau^{t} = \tau; \operatorname{Im}(\tau) > 0\}$. The Cayley transform $\kappa(\tau) = (\tau - \imath I_{g})(\tau + \imath I_{g})^{-1}$ gives a biholomorphism $\kappa : \mathcal{H}_{g} \xrightarrow{\cong} D_{g}^{III} = \{Z \in M_{g}(\mathbb{C}) : Z^{t} = Z, I - \overline{Z}Z > 0\}$ with a BSD.

We have a Hodge decomposition $H^1(A, \mathbb{C}) = H^0(A, \Omega_A) \oplus H^1(A, \mathcal{O}_A)$ in terms of $\overline{\partial}$ -cohomology and harmonic forms.

 $\operatorname{Sp}(g; \mathbb{R})$ acts on \mathcal{H}_g as hol. isometries. The arithmetic subgroup $\operatorname{Sp}(g; \mathbb{Z}) \subset \operatorname{Sp}(g; \mathbb{R})$ acts on \mathcal{H}_g as a discrete group. $\mathcal{A}_g := \mathcal{H}_g/\operatorname{Sp}(g; \mathbb{Z})$ is called the Siegel modular variety.

 $L \subset \mathbb{C}^n$ lattice, $\mathbb{C}/L = A \cong S^1 \times \cdots \times S^1$ (2g copies), $H^1(A, \mathbb{R}) \cong \mathbb{R}^{2g}$ first de Rham cohomology group. *A* is called an Abelian variety if $A \hookrightarrow \mathbb{P}^N$ is (projective)-algebraic.

A (principally polarized) Abelian variety corresponds to an *n*-by-*n* matrix τ obeying **Riemann bilinear relations (a)** τ **is symmetric, (b)** $\operatorname{Im}(\tau) > 0$. $L_{\tau} \subset \mathbb{C}^{g}$ is spanned by basis vectors e_{1}, \cdots, e_{g} and column vectors $\tau_{1}, \cdots, \tau_{g}$ of $\tau, A_{\tau} := \mathbb{C}^{g}/L_{\tau}$. $\mathcal{H}_{g} := \{\tau \in M_{g}(\mathbb{C}) : \tau^{t} = \tau; \operatorname{Im}(\tau) > 0\}$. The Cayley transform $\kappa(\tau) = (\tau - \imath I_{g})(\tau + \imath I_{g})^{-1}$ gives a biholomorphism $\kappa : \mathcal{H}_{g} \xrightarrow{\cong} D_{g}^{III} = \{Z \in M_{g}(\mathbb{C}) : Z^{t} = Z, I - \overline{Z}Z > 0\}$ with a BSD.

We have a Hodge decomposition $H^1(A, \mathbb{C}) = H^0(A, \Omega_A) \oplus H^1(A, \mathcal{O}_A)$ in terms of $\overline{\partial}$ -cohomology and harmonic forms.

 $\operatorname{Sp}(g; \mathbb{R})$ acts on \mathcal{H}_g as hol. isometries. The **arithmetic subgroup** $\operatorname{Sp}(g; \mathbb{Z}) \subset \operatorname{Sp}(g; \mathbb{R})$ acts on \mathcal{H}_g as a discrete group. $\mathcal{A}_g := \mathcal{H}_g/\operatorname{Sp}(g; \mathbb{Z})$ **is called the Siegel modular variety.** In general, for Ω a BSD and an arithmetic subgroup $\Gamma \subset \operatorname{Aut}(\Omega), X_{\Gamma} := \Omega/\Gamma$ is called a Shimura variety. Ngaiming Mok (HKU) Complex Function Fields August 19, 2022 11/40

Irreducible Bounded Symmetric Domains

The rank-1 case

The complex unit ball $\mathbb{B}^n := \left\{ z \in \mathbb{C}^n : \|z\|^2 < 1 \right\}$

Irreducible Bounded Symmetric Domains

The rank-1 case

The complex unit ball
$$\mathbb{B}^n := \left\{ z \in \mathbb{C}^n : \|z\|^2 < 1 \right\}$$

Classical domains in general

$$D^{I}(p,q) = \{ Z \in M(p,q,\mathbb{C}) : I - \overline{Z}^{t} Z > 0 \} , \quad p,q \ge 1$$
$$D^{II}_{n}(n,n) = \{ Z \in D^{I}_{n,n} : Z^{t} = -Z \} , \quad n \ge 2$$
$$D^{III}_{n} = \{ Z \in D^{I}_{n,n} : Z^{t} = Z \} , \quad n \ge 3$$
$$D^{IV}_{n} = \{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} : ||z||^{2} < 2 ;$$
$$||z||^{2} < 1 + \left| \frac{1}{2} \sum_{i=1}^{n} z_{i}^{2} \right|^{2} \} , \quad n \ge 3 .$$

Irreducible Bounded Symmetric Domains

The rank-1 case

The complex unit ball
$$\mathbb{B}^n := \left\{ z \in \mathbb{C}^n : \|z\|^2 < 1 \right\}$$

Classical domains in general

$$\begin{split} D^{I}(p,q) &= \{ Z \in \mathcal{M}(p,q,\mathbb{C}) : I - \overline{Z}^{t} Z > 0 \} , \quad p,q \geq 1 \\ D^{II}_{n}(n,n) &= \{ Z \in D^{I}_{n,n} : Z^{t} = -Z \} , \quad n \geq 2 \\ D^{III}_{n} &= \{ Z \in D^{I}_{n,n} : Z^{t} = Z \} , \quad n \geq 3 \\ D^{IV}_{n} &= \{ (z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} : \|z\|^{2} < 2 ; \\ \|z\|^{2} < 1 + \left| \frac{1}{2} \sum_{i=1}^{n} z_{i}^{2} \right|^{2} \} , \quad n \geq 3 . \end{split}$$

Exceptional domains

D^V , dim 16, **type** E_6 ; D^{VI} , dim 27, **type** E_7

Ngaiming Mok (HKU)

Complex Function Fields

12 / 40

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a **special point** (in which case $[\mathbb{Q}(\tau) : \mathbb{Q}] = 2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma} = \Omega/\Gamma$, and the **André-Oort Conjecture** ascertains that the **Zariski closure of any set of special points on** X_{Γ} is a finite union of Shimura subvarieties $X'_{\Gamma'} \hookrightarrow X_{\Gamma}$.

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a **special point** (in which case $[\mathbb{Q}(\tau) : \mathbb{Q}] = 2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma} = \Omega/\Gamma$, and the **André-Oort Conjecture** ascertains that the **Zariski closure of any set of special points on** X_{Γ} is a finite union of Shimura subvarieties $X'_{\Gamma'} \hookrightarrow X_{\Gamma}$.

The Pila-Zannier strategy

Pila-Zannier [PZ10] proposed strategy for finiteness and characterization problems concerning distinguished points in different arithmetic contexts (e.g. torsion points on Abelian varieties, special points on Shimura varieties).

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a **special point** (in which case $[\mathbb{Q}(\tau) : \mathbb{Q}] = 2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma} = \Omega/\Gamma$, and the **André-Oort Conjecture** ascertains that the **Zariski closure of any set of special points on** X_{Γ} is a finite union of Shimura subvarieties $X'_{\Gamma'} \hookrightarrow X_{\Gamma}$.

The Pila-Zannier strategy

Pila-Zannier [PZ10] proposed strategy for finiteness and characterization problems concerning distinguished points in different arithmetic contexts (e.g. torsion points on Abelian varieties, special points on Shimura varieties). For the André-Oort Conjecture on a Shimura variety $X_{\Gamma} = \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$, it breaks down into (a) an **arithmetic component** consisting of **lower estimates on the size of Galois orbits of special points** and

A point $\tau \in \mathcal{H}$ such that $\tau, j(\tau) \in \overline{\mathbb{Q}}$ is called a **special point** (in which case $[\mathbb{Q}(\tau) : \mathbb{Q}] = 2$ by Schneider). The notion of special points is defined for any Shimura variety $X_{\Gamma} = \Omega/\Gamma$, and the **André-Oort Conjecture** ascertains that the **Zariski closure of any set of special points on** X_{Γ} is a finite union of Shimura subvarieties $X'_{\Gamma'} \hookrightarrow X_{\Gamma}$.

The Pila-Zannier strategy

Pila-Zannier [PZ10] proposed strategy for finiteness and characterization problems concerning distinguished points in different arithmetic contexts (e.g. torsion points on Abelian varieties, special points on Shimura varieties). For the André-Oort Conjecture on a Shimura variety $X_{\Gamma} = \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$, it breaks down into (a) an **arithmetic component** consisting of **lower estimates on the size of Galois orbits of special points** and (b) a **geometric component** consisting of the characterization of **Zariski closures of** $\pi(S) \subset X_{\Gamma}$ for an algebraic subset $S \subset \Omega$.

Ngaiming Mok (HKU)

Complex Function Fields

Lang's general formulation

Main Theorem (Lang 1966) Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C} of order ρ ,

Main Theorem (Lang 1966) Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C} of order ρ , **trans.deg**._K $K(f_1, \dots, f_N) \ge 2$, and $D = \frac{\partial}{\partial z} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$.

Main Theorem (Lang 1966) Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C} of order ρ , **trans.deg**._K $K(f_1, \dots, f_N) \ge 2$, and $D = \frac{\partial}{\partial z} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$. Let x_1, \dots, x_m be distinct complex numbers outside the union of pole sets of f_1, \dots, f_N such that $f_i(x_{\nu}) \in K$ for $1 \le i \le N$, $1 \le \nu \le m$.

Main Theorem (Lang 1966) Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C} of order ρ , **trans.deg**._K $K(f_1, \dots, f_N) \ge 2$, and $D = \frac{\partial}{\partial z} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$. Let x_1, \dots, x_m be distinct complex numbers outside the union of pole sets of f_1, \dots, f_N such that $f_i(x_{\nu}) \in K$ for $1 \le i \le N$, $1 \le \nu \le m$. **Then**, $m \le 20\rho[K : \mathbb{Q}]$.

Main Theorem (Lang 1966) Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C} of order ρ , **trans.deg**._K $K(f_1, \dots, f_N) \ge 2$, and $D = \frac{\partial}{\partial z} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$. Let x_1, \dots, x_m be distinct complex numbers outside the union of pole sets of f_1, \dots, f_N such that $f_i(x_{\nu}) \in K$ for $1 \le i \le N$, $1 \le \nu \le m$. **Then**, $m \le 20\rho[K : \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$.

Main Theorem (Lang 1966) Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C} of order ρ , **trans.deg**._K $K(f_1, \dots, f_N) \ge 2$, and $D = \frac{\partial}{\partial z} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$. Let x_1, \dots, x_m be distinct complex numbers outside the union of pole sets of f_1, \dots, f_N such that $f_i(x_{\nu}) \in K$ for $1 \le i \le N$, $1 \le \nu \le m$. **Then**, $m \le 20\rho[K : \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$. **Proof.** Assume e^{α} algebraic. Put $K = \mathbb{Q}(\alpha, e^{\alpha})$; $f(z) = z, g(z) = e^{z}$. Main Theorem applies but f, g take values in K for $x_k = k\alpha, k \in \mathbb{N}$, **contradiction!**

Main Theorem (Lang 1966) Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C} of order ρ , **trans.deg**._K $K(f_1, \dots, f_N) \ge 2$, and $D = \frac{\partial}{\partial z} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$. Let x_1, \dots, x_m be distinct complex numbers outside the union of pole sets of f_1, \dots, f_N such that $f_i(x_{\nu}) \in K$ for $1 \le i \le N$, $1 \le \nu \le m$. **Then**, $m \le 20\rho[K : \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$. **Proof.** Assume e^{α} algebraic. Put $K = \mathbb{Q}(\alpha, e^{\alpha})$; $f(z) = z, g(z) = e^{z}$. Main Theorem applies but f, g take values in K for $x_k = k\alpha, k \in \mathbb{N}$, **contradiction!** \Box **Hence**, $e = e^1 \notin \overline{\mathbb{Q}}$; $e^{2\pi i} = 1 \in \overline{\mathbb{Q}} \Rightarrow \pi \notin \overline{\mathbb{Q}}$.

Main Theorem (Lang 1966) Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C} of order ρ , **trans.deg**._K $K(f_1, \dots, f_N) \ge 2$, and $D = \frac{\partial}{\partial z} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$. Let x_1, \dots, x_m be distinct complex numbers outside the union of pole sets of f_1, \dots, f_N such that $f_i(x_{\nu}) \in K$ for $1 \le i \le N$, $1 \le \nu \le m$. **Then**, $m \le 20\rho[K : \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$. **Proof.** Assume e^{α} algebraic. Put $K = \mathbb{Q}(\alpha, e^{\alpha})$; $f(z) = z, g(z) = e^{z}$. Main Theorem applies but f, g take values in K for $x_k = k\alpha, k \in \mathbb{N}$, **contradiction!** \Box Hence, $e = e^1 \notin \overline{\mathbb{Q}}$; $e^{2\pi i} = 1 \in \overline{\mathbb{Q}} \Rightarrow \pi \notin \overline{\mathbb{Q}}$.

Gelfond-Schneider (1934)

Corollary Let $\alpha, \beta \in \overline{\mathbb{Q}}$, $\alpha \neq 0, 1$ and $\beta \notin \mathbb{Q}$. Then, $\alpha^{\beta} \notin \overline{\mathbb{Q}}$.

Main Theorem (Lang 1966) Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C} of order ρ , **trans.deg**._K $K(f_1, \dots, f_N) \ge 2$, and $D = \frac{\partial}{\partial z} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$. Let x_1, \dots, x_m be distinct complex numbers outside the union of pole sets of f_1, \dots, f_N such that $f_i(x_{\nu}) \in K$ for $1 \le i \le N$, $1 \le \nu \le m$. **Then**, $m \le 20\rho[K : \mathbb{Q}]$.

Hermite-Lindemann (1882)

Corollary Let $\alpha \neq 0$ be an algebraic number. Then, $e^{\alpha} \notin \overline{\mathbb{Q}}$. **Proof.** Assume e^{α} algebraic. Put $K = \mathbb{Q}(\alpha, e^{\alpha})$; $f(z) = z, g(z) = e^{z}$. Main Theorem applies but f, g take values in K for $x_k = k\alpha, k \in \mathbb{N}$, **contradiction!** \Box Hence, $e = e^1 \notin \overline{\mathbb{Q}}$; $e^{2\pi i} = 1 \in \overline{\mathbb{Q}} \Rightarrow \pi \notin \overline{\mathbb{Q}}$.

Gelfond-Schneider (1934)

Corollary Let $\alpha, \beta \in \overline{\mathbb{Q}}, \alpha \neq 0, 1$ and $\beta \notin \mathbb{Q}$. **Then**, $\alpha^{\beta} \notin \overline{\mathbb{Q}}$. **Proof.** Assume $\alpha^{\beta} \in \overline{\mathbb{Q}}$. **Put** $K = \mathbb{Q}(\alpha, \beta, \alpha^{\beta})$; $f(z) = e^{z}, g(z) = e^{\beta z}$; $x_{k} = k \log \alpha, k \in \mathbb{N}$ to get a **contradiction**. Ngaining Mok (HKU) Complex Function Fields August 19, 2022 14/40

Lindemann-Weiersrstrass Theorem (1882)

Suppose $\alpha_1, \dots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent. Then, $e^{\alpha_1}, \dots, e^{\alpha_n}$ are algebraically independent.

Lindemann-Weiersrstrass Theorem (1882)

Suppose $\alpha_1, \dots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent. Then, $e^{\alpha_1}, \dots, e^{\alpha_n}$ are algebraically independent.

Schanuel Conjecture (1960s)

Suppose $\alpha_1, \dots, \alpha_n \in \mathbb{C}$ are \mathbb{Q} -linearly independent. Then,

trans.deg. $_{\mathbb{Q}}\mathbb{Q}(\alpha_1, \cdots, \alpha_n; e^{\alpha_1}, \cdots, e^{\alpha_n}) \geq n$.

LWT answers the special case of SC where $\alpha_1, \cdots, \alpha_n \in \overline{\mathbb{Q}}$

Lindemann-Weiersrstrass Theorem (1882)

Suppose $\alpha_1, \dots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q} -linearly independent. Then, $e^{\alpha_1}, \dots, e^{\alpha_n}$ are algebraically independent.

Schanuel Conjecture (1960s)

Suppose $\alpha_1, \dots, \alpha_n \in \mathbb{C}$ are \mathbb{Q} -linearly independent. Then, trans.deg. $\mathbb{Q}\mathbb{Q}(\alpha_1, \dots, \alpha_n; e^{\alpha_1}, \dots, e^{\alpha_n}) \ge n$.

LWT answers the special case of SC where $\alpha_1, \cdots, \alpha_n \in \overline{\mathbb{Q}}$

Baker's Theorem (1975)

Suppose $x_1, \dots, x_n \in \overline{\mathbb{Q}}$, and $\log(x_1), \dots \log(x_n)$ are linearly independent over \mathbb{Q} . Then $1, \log(x_1), \dots, \log(x_n)$ are linearly independent over $\overline{\mathbb{Q}}$

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)

Theorem Let *K* be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C}^d of order ρ ,

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)

Theorem Let *K* be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C}^d of order ρ , trans.deg._{*K*} $K(f_1, \dots, f_N) \ge d + 1$, and $D = \frac{\partial}{\partial z_\alpha} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$ for $1 \le \alpha \le d$.

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)

Theorem Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C}^d of order ρ , trans.deg._K $K(f_1, \dots, f_N) \ge d + 1$, and $D = \frac{\partial}{\partial z_\alpha} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$ for $1 \le \alpha \le d$. Then, the set of $\zeta \in \mathbb{C}^d$ lying outside poles of f_1, \dots, f_N and obeying $f(\zeta) \in K^N$ must lie in an alg. hypersurface of degree $\le d(d+1)\rho[K:\mathbb{Q}] + 2d$.

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)

Theorem Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C}^d of order ρ , trans.deg._K $K(f_1, \dots, f_N) \ge d + 1$, and $D = \frac{\partial}{\partial z_\alpha} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$ for $1 \le \alpha \le d$. Then, the set of $\zeta \in \mathbb{C}^d$ lying outside poles of f_1, \dots, f_N and obeying $f(\zeta) \in K^N$ must lie in an alg. hypersurface of degree $\le d(d+1)\rho[K:\mathbb{Q}] + 2d$.

Closed positive (p, p)-currents (Lelong 1964)

A \mathscr{C}^{∞} positive (1,1)-form ω means $i \sum \omega_{i\overline{j}}(z) dz^i \wedge d\overline{z^j}$, $(\omega_{i\overline{j}}(z)) > 0$.

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)

Theorem Let *K* be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C}^d of order ρ , trans.deg._{*K*}*K*(f_1, \dots, f_N) $\geq d + 1$, and $D = \frac{\partial}{\partial z_\alpha} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$ for $1 \leq \alpha \leq d$. Then, the set of $\zeta \in \mathbb{C}^d$ lying outside poles of f_1, \dots, f_N and obeying $f(\zeta) \in K^N$ must lie in an alg. hypersurface of degree $\leq d(d+1)\rho[K:\mathbb{Q}] + 2d$.

Closed positive (p, p)-currents (Lelong 1964)

A \mathscr{C}^{∞} positive (1,1)-form ω means $i \sum \omega_{i\bar{j}}(z)dz^i \wedge d\overline{z^j}$, $(\omega_{i\bar{j}}(z)) > 0$. A (p,p)-current T is positive $\Leftrightarrow T \wedge \omega_1 \wedge \cdots \wedge \omega_{n-p} \ge 0$ as a measure. $(\omega_i$ like ω).

Algebraic diff. eqns. in SCV (Bombieri, Invent. Math. 1970)

Theorem Let K be a number field, f_1, \dots, f_N be meromorphic functions on \mathbb{C}^d of order ρ , trans.deg._K $K(f_1, \dots, f_N) \ge d + 1$, and $D = \frac{\partial}{\partial z_\alpha} : K(f_1, \dots, f_N) \hookrightarrow K(f_1, \dots, f_N)$ for $1 \le \alpha \le d$. Then, the set of $\zeta \in \mathbb{C}^d$ lying outside poles of f_1, \dots, f_N and obeying $f(\zeta) \in K^N$ must lie in an alg. hypersurface of degree $\le d(d+1)\rho[K:\mathbb{Q}] + 2d$.

Closed positive (p, p)-currents (Lelong 1964)

A \mathscr{C}^{∞} positive (1,1)-form ω means $i \sum \omega_{i\overline{j}}(z)dz^i \wedge d\overline{z^j}$, $(\omega_{i\overline{j}}(z)) > 0$. A (p, p)-current T is positive $\Leftrightarrow T \wedge \omega_1 \wedge \cdots \wedge \omega_{n-p} \ge 0$ as a measure. $(\omega_i$ like ω). A (d-)closed positive $\mathscr{C}^{\infty}(1, 1)$ -form is locally $T = i\partial\overline{\partial}\varphi$ where $\varphi \in \mathscr{C}^{\infty}$ and $(\frac{\partial^2 \varphi}{\partial z_i \partial \overline{z_j}}) > 0$. Locally a closed positive (1, 1)-current $T = i\partial\overline{\partial}\varphi$ where φ is weakly *psh*.

Monotonicity of weighted mass of T over concentric Euclidean balls

Assume T defined on $\mathbb{B}^n(0; R)$. For 0 < r < R denote by m(T; 0; r) the integral of $T \wedge (i\partial \overline{\partial} ||z||^2)^{n-p}$ over $\mathbb{B}^n(0; r)$; $\nu(T, 0; r) := \frac{m(T, 0; r)}{\operatorname{Vol}(\mathbb{B}^{n-p}(0; R))}$.

Monotonicity of weighted mass of T over concentric Euclidean balls

Assume *T* defined on $\mathbb{B}^n(0; R)$. For 0 < r < R denote by m(T; 0; r) the integral of $T \wedge (i\partial\overline{\partial}||z||^2)^{n-p}$ over $\mathbb{B}^n(0; r)$; $\nu(T, 0; r) := \frac{m(T, 0; r)}{\operatorname{Vol}(\mathbb{B}^{n-p}(0; R))}$. Lelong proved that $\nu(T; 0; r)$ is decreasing as $r \to 0$; the limit as $r \to 0$ is now called the Lelong number $\nu(T; 0)$ at 0. E.g., T := [S], the integral current of a pure (n - p)-dimensional complex analytic subvariety $S \subset \mathbb{B}^n(0; R)$, where $\nu([S]; 0) = \operatorname{mult}_0(S) \in \mathbb{N}$ is the multiplicity of *S* at 0.

Recovering complex analytic subvarieties from density conditions

Theorem (Siu [*Invent. Math.* (1970)]) Let X be a complex manifold, dim_{\mathbb{C}}(X) =: n, $1 \le p < n$, and T be a closed positive (p, p)-current on X. Let c > 0. Put $E_c(T) := \{x \in X : \nu(T; x) \ge c\}$. Then, $E_c(T) \subset X$ is a complex analytic subvariety where each irreducible subvariety is of complex codimension $\ge p$.

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map.

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\mathscr{Z}ar} \subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} .

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\mathscr{Z}ar} \subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\mathscr{Z}ar} \subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Key arguments are from model theory (counting theorem Pila-Wilkie) and complex differential geometry (volume estimates of Hwang-To).

After Ullmo-Yafaev [UY14] in the case of cocompact lattices, and Pila-Tsimerman [PT14] in the case of Siegel modular varieties, we have

Theorem (Klingler-Ullmo-Yafaev [KUY16])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic torsion-free lattice. Write $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\mathscr{Z}ar} \subset X_{\Gamma}$ the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Key arguments are from model theory (counting theorem Pila-Wilkie) and complex differential geometry (volume estimates of Hwang-To).

Using the above Tsimerman [Ts18] has proven the André-Oort Conjecture for Siegel modular varieties $\mathcal{A}_g = \mathcal{H}_g/\mathrm{Sp}(g;\mathbb{Z})$. Recently, Pila-Shankar-Tsimerman has announced a solution of the full André-Oort Conjecture.

For a rational point $x = \frac{p}{q}$; $p, q \in \mathbb{Z}, q \neq 0$, where |p| and |q| are coprime, we define the height $H(x) = \max(|p|, |q|)$. For $x = (x_1, \dots, x_n) \in \mathbb{Q}^n$ we define $H(x) = \max(H(x_1), \dots, H(x_n))$.

For a rational point $x = \frac{p}{q}$; $p, q \in \mathbb{Z}, q \neq 0$, where |p| and |q| are coprime, we define the height $H(x) = \max(|p|, |q|)$. For $x = (x_1, \dots, x_n) \in \mathbb{Q}^n$ we define $H(x) = \max(H(x_1), \dots, H(x_n))$. For $Z \subset \mathbb{R}^n$, and for T > 0 we define the counting function $N(Z, T) := |\{x \in Z \cap \mathbb{Q}^n : H(x) \leq T\}|$.

For a rational point $x = \frac{p}{q}$; $p, q \in \mathbb{Z}, q \neq 0$, where |p| and |q| are coprime, we define the height $H(x) = \max(|p|, |q|)$. For $x = (x_1, \dots, x_n) \in \mathbb{Q}^n$ we define $H(x) = \max(H(x_1), \dots, H(x_n))$. For $Z \subset \mathbb{R}^n$, and for T > 0 we define the counting function $N(Z, T) := |\{x \in Z \cap \mathbb{Q}^n : H(x) \leq T\}|$.

Model Theory: o-minimal structures on \mathbb{R}^n

A structure \mathscr{S} on $\{\mathbb{R}^n : n \in \mathbb{N}\}$ consists of Boolean algebras of subsets $S_n \subset 2^{\mathbb{R}^n}$ closed under taking Cartesian products and coordinate projections, s.t. $\operatorname{Diag}(\mathbb{R} \times \mathbb{R}) \in S_2$, and, $\operatorname{Graph}(+)$, $\operatorname{Graph}(\times) \in S_3$.

For a rational point $x = \frac{p}{q}$; $p, q \in \mathbb{Z}, q \neq 0$, where |p| and |q| are coprime, we define the height $H(x) = \max(|p|, |q|)$. For $x = (x_1, \dots, x_n) \in \mathbb{Q}^n$ we define $H(x) = \max(H(x_1), \dots, H(x_n))$. For $Z \subset \mathbb{R}^n$, and for T > 0 we define the counting function $N(Z, T) := |\{x \in Z \cap \mathbb{Q}^n : H(x) \leq T\}|$.

Model Theory: o-minimal structures on \mathbb{R}^n

A structure \mathscr{S} on $\{\mathbb{R}^n : n \in \mathbb{N}\}$ consists of Boolean algebras of subsets $S_n \subset 2^{\mathbb{R}^n}$ closed under taking Cartesian products and coordinate projections, s.t. $\operatorname{Diag}(\mathbb{R} \times \mathbb{R}) \in S_2$, and, $\operatorname{Graph}(+)$, $\operatorname{Graph}(\times) \in S_3$. \mathscr{S} is called o-minimal if S_1 consists of finite unions of intervals and points.

For a rational point $x = \frac{p}{q}$; $p, q \in \mathbb{Z}, q \neq 0$, where |p| and |q| are coprime, we define the height $H(x) = \max(|p|, |q|)$. For $x = (x_1, \dots, x_n) \in \mathbb{Q}^n$ we define $H(x) = \max(H(x_1), \dots, H(x_n))$. For $Z \subset \mathbb{R}^n$, and for T > 0 we define the counting function $N(Z, T) := |\{x \in Z \cap \mathbb{Q}^n : H(x) \leq T\}|$.

Model Theory: o-minimal structures on \mathbb{R}^n

A structure \mathscr{S} on $\{\mathbb{R}^n : n \in \mathbb{N}\}$ consists of Boolean algebras of subsets $S_n \subset 2^{\mathbb{R}^n}$ closed under taking Cartesian products and coordinate projections, s.t. $\operatorname{Diag}(\mathbb{R} \times \mathbb{R}) \in S_2$, and, $\operatorname{Graph}(+)$, $\operatorname{Graph}(\times) \in S_3$. \mathscr{S} is called o-minimal if S_1 consists of finite unions of intervals and points. $\mathbb{R}_{an,exp}$ is the minimal \mathscr{S} including subanalytic sets and Graph(*exp*), and it is o-minimal (Dries-Miller 1994).

For a rational point $x = \frac{p}{q}$; $p, q \in \mathbb{Z}, q \neq 0$, where |p| and |q| are coprime, we define the height $H(x) = \max(|p|, |q|)$. For $x = (x_1, \dots, x_n) \in \mathbb{Q}^n$ we define $H(x) = \max(H(x_1), \dots, H(x_n))$. For $Z \subset \mathbb{R}^n$, and for T > 0 we define the counting function $N(Z, T) := |\{x \in Z \cap \mathbb{Q}^n : H(x) \leq T\}|$.

Model Theory: o-minimal structures on \mathbb{R}^n

A structure \mathscr{S} on $\{\mathbb{R}^n : n \in \mathbb{N}\}$ consists of Boolean algebras of subsets $S_n \subset 2^{\mathbb{R}^n}$ closed under taking Cartesian products and coordinate projections, s.t. $\operatorname{Diag}(\mathbb{R} \times \mathbb{R}) \in S_2$, and, $\operatorname{Graph}(+)$, $\operatorname{Graph}(\times) \in S_3$. \mathscr{S} is called o-minimal if S_1 consists of finite unions of intervals and points. $\mathbb{R}_{an,exp}$ is the minimal \mathscr{S} including subanalytic sets and Graph(*exp*), and it is o-minimal (Dries-Miller 1994). Any member (called definable set) in an o-minimal \mathscr{S} has finitely many connected components.

Theorem (Pila-Wilkie, Duke J. 2006)

Let $Z \subset \mathbb{R}^n$ be a definable subset in a given o-minimal structure. Then, $N(Z - Z^{\text{alg}}, T) = T^{o(1)}$, i.e., $|Z - Z^{\text{alg}}|$ grows subpolynomially.

Ngaiming Mok (HKU)

Complex Function Fields

August 19, 2022

19 / 40

A generalized Lelong monotonicity formula

Proposition

Let φ be an unbounded \mathscr{C}^{∞} strictly psh exhaustion fct on a Stein manifold X. Let $F : \mathbb{R} \to \mathbb{R}$ be strictly increasing s.t. $\psi := F \circ \varphi$ is weakly psh. Let S be a closed positive (p, p)-current on X, 0 . Then,

$$h_{\mathcal{S},\varphi}(\mathcal{T}) := \mathcal{F}'(\mathcal{T})^{n-p} \int_{\{\varphi < \mathcal{T}\}} \mathcal{S} \wedge (\sqrt{-1}\partial \overline{\partial} \varphi)^{n-p}$$

is a monotonically increasing nonnegative function in T.

A generalized Lelong monotonicity formula

Proposition

Let φ be an unbounded \mathscr{C}^{∞} strictly psh exhaustion fct on a Stein manifold X. Let $F : \mathbb{R} \to \mathbb{R}$ be strictly increasing s.t. $\psi := F \circ \varphi$ is weakly psh. Let S be a closed positive (p, p)-current on X, 0 . Then,

$$h_{\mathcal{S},\varphi}(\mathcal{T}) := F'(\mathcal{T})^{n-p} \int_{\{\varphi < \mathcal{T}\}} \mathcal{S} \wedge (\sqrt{-1}\partial\overline{\partial}\varphi)^{n-p}$$

is a monotonically increasing nonnegative function in T.

Corollary (rough form of Theorem (Hwang-To 2002))

Let (Ω, ds_{Ω}^2) be a BSD equipped with its Bergman metric, and denote by $\mathbb{B}(x_0; r)$ its geodesic ball of radius r centered at $x_0 \in \Omega$. Let $V \subset \Omega$ be an irr. complex analytic subvariety, dim_C V > 0, passing through x_0 . Then, $\exists \lambda = \lambda_{\Omega}$ and $C = C_{\Omega} > 0$ such that **Volume** ($\mathbb{B}(x_0; r)$) $\geq Ce^{\lambda r}$.

• Lelong's original formula was for closed positive (p, p)-currents on \mathbb{C}^n , in which one considers the psh function $\varphi = ||z||^2$. In this case $\psi := \log \varphi = \log ||z||^2$ is weakly psh, $F(T) = \log(T)$.

- Lelong's original formula was for closed positive (p, p)-currents on \mathbb{C}^n , in which one considers the psh function $\varphi = ||z||^2$. In this case $\psi := \log \varphi = \log ||z||^2$ is weakly psh, $F(T) = \log(T)$.
- In the case Bⁿ with potential function $\varphi = -(n+1)\log(1-||z||^2)$ for the Bergman metric $d(0;z) \sim \varphi(z)$, $\exists c_2 > c_1 > 0$ such that $\{\varphi < c_1r\} \subset \mathbb{B}(0;r) \subset \{\varphi < c_2r\}$. Take $F(T) = -e^{-\alpha T}$. We can check that $\exists \alpha > 0$ such that for $\psi := F \circ \varphi = -e^{-\alpha \varphi}$, $\sqrt{-1}\partial \overline{\partial} \psi \ge 0$.

- Lelong's original formula was for closed positive (p, p)-currents on \mathbb{C}^n , in which one considers the psh function $\varphi = ||z||^2$. In this case $\psi := \log \varphi = \log ||z||^2$ is weakly psh, $F(T) = \log(T)$.
- In the case Bⁿ with potential function $\varphi = -(n+1)\log(1-||z||^2)$ for the Bergman metric $d(0; z) \sim \varphi(z)$, $\exists c_2 > c_1 > 0$ such that $\{\varphi < c_1 r\} \subset \mathbb{B}(0; r) \subset \{\varphi < c_2 r\}$. Take $F(T) = -e^{-\alpha T}$. We can check that $\exists \alpha > 0$ such that for $\psi := F \circ \varphi = -e^{-\alpha \varphi}$, $\sqrt{-1}\partial \overline{\partial} \psi \ge 0$. For this we check $\sqrt{-1}\partial \overline{\partial} \varphi \ge \alpha \partial \varphi \land \overline{\partial} \varphi$.

- Lelong's original formula was for closed positive (p, p)-currents on \mathbb{C}^n , in which one considers the psh function $\varphi = ||z||^2$. In this case $\psi := \log \varphi = \log ||z||^2$ is weakly psh, $F(T) = \log(T)$.
- In the case Bⁿ with potential function φ = −(n + 1) log (1 − ||z||²) for the Bergman metric d(0; z) ~ φ(z), ∃c₂ > c₁ > 0 such that {φ < c₁r} ⊂ B(0; r) ⊂ {φ < c₂r}. Take F(T) = −e^{−αT}. We can check that ∃α > 0 such that for ψ := F ∘ φ = −e^{−αφ}, √−1∂∂ψ ≥ 0. For this we check √−1∂∂φ ≥ α∂φ ∧ ∂φ. For a BSD Ω, one uses φ(z) = log K_Ω(z, z), K_Ω = Bergman Kernal of Ω.

Theorem (Mok [Mo19, Compositio Math.])

Let $n \geq 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\mathscr{Z}ar} \subset X_{\Gamma}$ be the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

Theorem (Mok [Mo19, Compositio Math.])

Let $n \geq 2$ and $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$ be a not necessarily arithmetic torsion-free lattice. Write $X_{\Gamma} := \mathbb{B}^n / \Gamma$, $\pi : \Omega \to X_{\Gamma}$ for the uniformization map. Let $Z \subset \Omega$ be an irreducible algebraic subset and denote by $\mathscr{Z} = \overline{\pi(Z)}^{\mathscr{Z}ar} \subset X_{\Gamma}$ be the Zariski closure of image of Z under the uniformization map in the quasi-projective variety X_{Γ} . Then, $\mathscr{Z} \subset X_{\Gamma}$ is a totally geodesic subset.

(a) We have Bⁿ ⊂ Pⁿ, Z as an open subset of an algebraic Z ⊂ Pⁿ
Consider [Z] as a member of an irreducible component K of the Chow scheme Chow(Pⁿ), with associated fiber bundle μ : U → Pⁿ. Restrict U to Bⁿ and take quotients wrt Γ to get μ_Γ : U_Γ → X_Γ. Prove that U_Γ is algebraic by means of L²-estimates of ∂.

AL Theorem for Rank-1 Lattices (cont.)

(b) Let *X* be an irreducible component of π_Γ⁻¹(*X*). Then, at a good point b ∈ ∂*X*, *X* extends across b as the union of an analytic family of algebraic subvarieties of ℙⁿ. Let *D* be a germ of complex submanifold at b grafted to extend *X* analytically across b.

AL Theorem for Rank-1 Lattices (cont.)

- (b) Let *X* be an irreducible component of π_Γ⁻¹(*X*). Then, at a good point b ∈ ∂*X*, *X* extends across b as the union of an analytic family of algebraic subvarieties of ℙⁿ. Let *D* be a germ of complex submanifold at b grafted to extend *X* analytically across b.
- (c) D∩Bⁿ is a local strictly peudoconvex manifold with smooth boundary, and by Klembeck [Kl87] D∩Bⁿ is asymptotically of constant holomorphic sectional curvature -2, hence asymptotically totally geodesic.

AL Theorem for Rank-1 Lattices (cont.)

- (b) Let *X* be an irreducible component of π_Γ⁻¹(*X*). Then, at a good point b ∈ ∂*X*, *X* extends across b as the union of an analytic family of algebraic subvarieties of ℙⁿ. Let *D* be a germ of complex submanifold at b grafted to extend *X* analytically across b.
- (c) D∩Bⁿ is a local strictly peudoconvex manifold with smooth boundary, and by Klembeck [Kl87] D∩Bⁿ is asymptotically of constant holomorphic sectional curvature -2, hence asymptotically totally geodesic.
- (d) By rescaling using elements γ ∈ π₁(𝔅) → π₁(𝐾_Γ) ≅ Γ, it follows that
 Π is of constant holomorphic sectional curvature -2, hence totally geodesic.

Ngaiming Mok (HKU)

Let (X, g) be a complete Kähler manifold. Assume that $Vol(X, g) < \infty$, ||Sectional Curvature(X, g)|| $< \infty$, and that X has finite topology.

Let (X, g) be a complete Kähler manifold. Assume that $Vol(X, g) < \infty$, ||Sectional Curvature(X, g)|| $< \infty$, and that X has finite topology. Suppose there exists a Hermitian holomorphic line bundle (E, h) of pinched positive curvature.

Let (X, g) be a complete Kähler manifold. Assume that $Vol(X, g) < \infty$, **||Sectional Curvature**(X, g)|| $< \infty$, and that X has finite topology. Suppose there exists a Hermitian holomorphic line bundle (E, h) of pinched positive curvature. For k > 0, denote by $\mathcal{N}(X, E^k)$ the space of holomorphic sections $s \in \Gamma(X, E^k)$ of the Nevanlinna class, *i.e.*, ssatisfies $\int_X \max(\log \|s\|_{h^k}, 0) < \infty$.

Let (X, g) be a complete Kähler manifold. Assume that $Vol(X, g) < \infty$, **Sectional Curvature** $(X,g) \parallel < \infty$, and that X has finite topology. Suppose there exists a Hermitian holomorphic line bundle (E, h) of **pinched positive curvature.** For k > 0, denote by $\mathcal{N}(X, E^k)$ the space of holomorphic sections $s \in \Gamma(X, E^k)$ of the Nevanlinna class, *i.e.*, s satisfies $\int_X \max(\log \|s\|_{h^k}, 0) < \infty$. Then, $\dim(\mathcal{N}(X, E^k)) < \infty$ for all $k \ge 0$. Moreover, there exists some positive integer k such that $\mathcal{N}(X, E^k)$ has no base points and it embeds X into $\mathbb{P}(\mathcal{N}(X, E^k)^*)$ realizing X as a quasi-projective manifold.

Theorem (Ax71, Annals) Let $f_1, \dots, f_n \in \mathbb{C}[[z_1, \dots, z_m]]$ be \mathbb{Q} -linearly independent formal power series with no constant terms.

Theorem (Ax71, Annals) Let $f_1, \dots, f_n \in \mathbb{C}[[z_1, \dots, z_m]]$ be \mathbb{Q} -linearly independent formal power series with no constant terms. Then,

trans.deg. $\mathbb{C}\mathbb{C}(f_1, \cdots, f_n; e^{2\pi i f_1}, \cdots, e^{2\pi i f_n}) \geq n + \operatorname{rank}\left(\frac{\partial f_i}{\partial z_j}\right).$

Theorem (Ax71, Annals) Let $f_1, \dots, f_n \in \mathbb{C}[[z_1, \dots, z_m]]$ be \mathbb{Q} -linearly independent formal power series with no constant terms. Then,

trans.deg. $\mathbb{C}(f_1, \cdots, f_n; e^{2\pi i f_1}, \cdots, e^{2\pi i f_n}) \ge n + \operatorname{rank}\left(\frac{\partial f_i}{\partial z_i}\right).$

The case of formal power series is reducible to that of convergent power series, by Seidenberg, hence to considering the restriction of functions to a germ of complex submanifold (V; 0) ⊂ (C^m; 0).

Theorem (Ax71, Annals) Let $f_1, \dots, f_n \in \mathbb{C}[[z_1, \dots, z_m]]$ be \mathbb{Q} -linearly independent formal power series with no constant terms. Then,

trans.deg. $\mathbb{C}(f_1, \cdots, f_n; e^{2\pi i f_1}, \cdots, e^{2\pi i f_n}) \ge n + \operatorname{rank}\left(\frac{\partial f_i}{\partial z_i}\right)$.

- The case of formal power series is reducible to that of convergent power series, by Seidenberg, hence to considering the restriction of functions to a germ of complex submanifold (V; 0) ⊂ (C^m; 0).
- 2 Let U ⊂ Cⁿ × (C^{*})ⁿ be the graph of V above under the exponential map. The hypothesis implies that the projection of U to (C^{*})ⁿ is not contained in any proper algebraic subgroup.

Theorem (Ax71, Annals) Let $f_1, \dots, f_n \in \mathbb{C}[[z_1, \dots, z_m]]$ be \mathbb{Q} -linearly independent formal power series with no constant terms. Then,

trans.deg. $\mathbb{C}(f_1, \cdots, f_n; e^{2\pi i f_1}, \cdots, e^{2\pi i f_n}) \ge n + \operatorname{rank}\left(\frac{\partial f_i}{\partial z_i}\right)$.

- The case of formal power series is reducible to that of convergent power series, by Seidenberg, hence to considering the restriction of functions to a germ of complex submanifold (V; 0) ⊂ (C^m; 0).
- ② Let U ⊂ Cⁿ × (C^{*})ⁿ be the graph of V above under the exponential map. The hypothesis implies that the projection of U to (C^{*})ⁿ is not contained in any proper algebraic subgroup.

Ax-Schanuel for the *j*-function

Pila-Tsimerman [PT16] proved an analogue of Ax-Schanuel for the Cartesian product \mathcal{H}^n of upper half-planes, replacing the exponential function by $j : \mathcal{H} \to \mathbb{C}$, thus considering $\mathbb{C}(f_1, \dots, f_n; j \circ f_1, \dots, j \circ f_n)$. They also proved an analogue involving at the same time j' and j''.

Ngaiming Mok (HKU)

25 / 40

Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic lattice, and write $X_{\Gamma} := \Omega/\Gamma$, as a quasi-projective variety. Let $W \subset \Omega \times X_{\Gamma}$ be an algebraic subvariety. Let $D \subset \Omega \times X_{\Gamma}$ be the graph of the uniformization map $\pi_{\Gamma} : \Omega \to X_{\Gamma}$, and U be an irreducible component of $W \cap D$ whose dimension is larger than expected,

Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic lattice, and write $X_{\Gamma} := \Omega/\Gamma$, as a quasi-projective variety. Let $W \subset \Omega \times X_{\Gamma}$ be an algebraic subvariety. Let $D \subset \Omega \times X_{\Gamma}$ be the graph of the uniformization map $\pi_{\Gamma} : \Omega \to X_{\Gamma}$, and U be an irreducible component of $W \cap D$ whose dimension is larger than expected, *i.e.*,

 $\operatorname{codim} U < \operatorname{codim}(W) + \operatorname{codim}(D),$

the codimensions being in $\Omega \times X_{\Gamma}$, or, equivalently,

 $\dim(U) > \dim(W) - \dim(X_{\Gamma}).$

Ax-Schanuel Theorem on Shimura varieties

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain, $\Gamma \subset \operatorname{Aut}(\Omega)$ be an arithmetic lattice, and write $X_{\Gamma} := \Omega/\Gamma$, as a quasi-projective variety. Let $W \subset \Omega \times X_{\Gamma}$ be an algebraic subvariety. Let $D \subset \Omega \times X_{\Gamma}$ be the graph of the uniformization map $\pi_{\Gamma} : \Omega \to X_{\Gamma}$, and U be an irreducible component of $W \cap D$ whose dimension is larger than expected, *i.e.*,

 $\operatorname{codim} U < \operatorname{codim}(W) + \operatorname{codim}(D),$

the codimensions being in $\Omega \times X_{\Gamma}$, or, equivalently,

 $\dim(U) > \dim(W) - \dim(X_{\Gamma}).$

Then, the projection of U to X_{Γ} is contained in a totally geodesic subvariety $Y \subsetneq X_{\Gamma}$.

Ngaiming Mok (HKU)

Complex Function Fields

Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice $\Gamma \subset \operatorname{Aut}(\Omega), \pi : \Omega \to X_{\Gamma}$. Modular functions are Γ -invariant meromorphic functions descending to rational functions on X_{Γ} .

Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice $\Gamma \subset \operatorname{Aut}(\Omega), \pi : \Omega \to X_{\Gamma}$. Modular functions are Γ -invariant meromorphic functions descending to rational functions on X_{Γ} .

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let $V \subset \Omega$ be an irreducible complex analytic subvariety, **not contained** in any weakly special subvariety $E \subsetneq \Omega$. Let $(z_i)_{1 \le i \le n}$ be algebraic coordinates on Ω , $\{\varphi_1, \ldots, \varphi_N\}$ be a basis of modular functions. Then, trans.deg. $\mathbb{C}(\{z_i\}, \{\phi_i\}) \ge n + \dim V$,

where all ϕ_i are assumed defined at some point on V and restricted to V.

Ax-Schanuel of MPT in terms of functional transcendence

Fix a torsion-free lattice $\Gamma \subset \operatorname{Aut}(\Omega), \pi : \Omega \to X_{\Gamma}$. Modular functions are Γ -invariant meromorphic functions descending to rational functions on X_{Γ} .

Theorem (Mok-Pila-Tsimerman ([MPT19, Annals])

Let $V \subset \Omega$ be an irreducible complex analytic subvariety, **not contained** in any weakly special subvariety $E \subsetneq \Omega$. Let $(z_i)_{1 \le i \le n}$ be algebraic coordinates on Ω , $\{\varphi_1, \ldots, \varphi_N\}$ be a basis of modular functions. Then,

trans.deg. $\mathbb{C}(\{z_i\}, \{\phi_j\}) \ge n + \dim V$,

where all ϕ_i are assumed defined at some point on V and restricted to V.

- We may take the algebraic coordinates (z₁, · · · , z_n) to be the Harish-Chandra coordinates on Ω ∈ Cⁿ ⊂ Ω.
- Here a weakly special subvariety $E \subset \Omega$ is a totally geodesic submanifold $E \subset \Omega$ such that $\pi(E) \subset X_{\Gamma}$ is quasi-projective.

Ngaiming Mok (HKU)

Complex Function Fields

The Definable Remmert-Stein Theorem

Theorem (Peterzil-Starchenko [Proc. ICM 2010]) Let M be a definable complex manifold and E a definable complex analytic subset of M. Let A be a definable, complex analytic subset of M - E. Then, its topological closure \overline{A} is a complex analytic subset of M.

The Definable Remmert-Stein Theorem

Theorem (Peterzil-Starchenko [Proc. ICM 2010]) Let M be a definable complex manifold and E a definable complex analytic subset of M. Let A be a definable, complex analytic subset of M - E. Then, its topological closure \overline{A} is a complex analytic subset of M.

The Definable Chow Theorem

Theorem (Peterzil-Starchenko, variation of [Proc. ICM 2010]) Let Y be a quasi-projective algebraic variety. Let $A \subset Y$ be definable, complex analytic, and closed in Y. Then, A is algebraic.

Theorem (Bakker-Tsimerman, Invent. Math. 2019)

Let X be a nonsingular quasi-projective manifold underlying a **polarized integral variation of Hodge structures**, \mathscr{D} be the associated **period domain**, $\mathscr{D} \subset \check{\mathscr{D}}$ the standard embedding of \mathscr{D} into its dual $\check{\mathscr{D}}$, which is a rational homogeneous manifold.

Theorem (Bakker-Tsimerman, *Invent. Math.* 2019)

Let X be a nonsingular quasi-projective manifold underlying a **polarized integral variation of Hodge structures**, \mathscr{D} be the associated **period domain**, $\mathscr{D} \subset \check{\mathscr{D}}$ the standard embedding of \mathscr{D} into its dual $\check{\mathscr{D}}$, which is a rational homogeneous manifold. Let W be the graph of the period map $\varphi : X \to \mathscr{D}/\Gamma$, where $\Gamma \subset \operatorname{Aut}(\mathscr{D})$ is the image of the monodromy representation of $\pi_1(X)$, assumed to be torsion-free. Let $V \subset X \times \check{\mathscr{D}}$ be an algebraic subset and U be an irreducible component of $V \cap W$ satisfying

 $\operatorname{codim}_{X \times \check{\mathscr{D}}}(U) < \operatorname{codim}_{X \times \check{\mathscr{D}}}(V) + \operatorname{codim}_{X \times \check{\mathscr{D}}}(W).$

Theorem (Bakker-Tsimerman, *Invent. Math.* 2019)

Let X be a nonsingular quasi-projective manifold underlying a **polarized integral variation of Hodge structures**, \mathscr{D} be the associated **period domain**, $\mathscr{D} \subset \check{\mathscr{D}}$ the standard embedding of \mathscr{D} into its dual $\check{\mathscr{D}}$, which is a rational homogeneous manifold. Let W be the graph of the period map $\varphi : X \to \mathscr{D}/\Gamma$, where $\Gamma \subset \operatorname{Aut}(\mathscr{D})$ is the image of the monodromy representation of $\pi_1(X)$, assumed to be torsion-free. Let $V \subset X \times \check{\mathscr{D}}$ be an algebraic subset and U be an irreducible component of $V \cap W$ satisfying

 $\operatorname{codim}_{X \times \check{\mathscr{D}}}(U) < \operatorname{codim}_{X \times \check{\mathscr{D}}}(V) + \operatorname{codim}_{X \times \check{\mathscr{D}}}(W).$

Then, the canonical projection of U to X is contained in a proper weak Mumford-Tate subvariety.

Ngaiming Mok (HKU)

Ax-Schanuel for the rank-1 case (Baldi-Ullmo)

Ax-Schanuel for the rank-1 case was recently proven by Baldi-Ullmo.

Ax-Schanuel for the rank-1 case (Baldi-Ullmo)

Ax-Schanuel for the rank-1 case was recently proven by Baldi-Ullmo. Given any torsion-free lattice $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$, $n \ge 2$, the lattice, though not necessarily arithmetic, must be integral in some precise way, and they embed $X_{\Gamma} = \mathbb{B}^n / \Gamma$ via some period map into \mathscr{D} / Γ and exploit atypcial intersection on \mathscr{D} / Γ' , proving Ax-Schanuel for X_{Γ} by means of Bakker-Tsimerman's Ax-Schanuel Theorem for period domains.

Ax-Schanuel for the rank-1 case (Baldi-Ullmo)

Ax-Schanuel for the rank-1 case was recently proven by Baldi-Ullmo. Given any torsion-free lattice $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$, $n \ge 2$, the lattice, though not necessarily arithmetic, must be integral in some precise way, and they embed $X_{\Gamma} = \mathbb{B}^n / \Gamma$ via some period map into \mathscr{D} / Γ and exploit atypcial intersection on \mathscr{D} / Γ' , proving Ax-Schanuel for X_{Γ} by means of Bakker-Tsimerman's Ax-Schanuel Theorem for period domains.

For finite-volume quotients of **reducible bounded symmetric domains** $\Omega = \Omega_1 \times \cdots \times \Omega_m$ Ax-Schanuel remains unsolved.

Ax-Schanuel for the rank-1 case (Baldi-Ullmo)

Ax-Schanuel for the rank-1 case was recently proven by Baldi-Ullmo. Given any torsion-free lattice $\Gamma \subset \operatorname{Aut}(\mathbb{B}^n)$, $n \ge 2$, the lattice, though not necessarily arithmetic, must be integral in some precise way, and they embed $X_{\Gamma} = \mathbb{B}^n / \Gamma$ via some period map into \mathscr{D} / Γ and exploit atypcial intersection on \mathscr{D} / Γ' , proving Ax-Schanuel for X_{Γ} by means of Bakker-Tsimerman's Ax-Schanuel Theorem for period domains.

For finite-volume quotients of reducible bounded symmetric domains $\Omega = \Omega_1 \times \cdots \times \Omega_m$ Ax-Schanuel remains unsolved. Especially, when there exist 1-dimensional factors Ω_i in general the counting argument of Pila-Wilkie no longer works.

Ngaiming Mok (HKU)

Complex Function Fields

Algebraic subsets of a BSD invariant under cocompact $\check{\Gamma}$

Proposition 1 (Chan-Mok, JDG 2021) Let D and Ω be BSD, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, $F : D \to \Omega$ be a Φ -equivariant holomorphic map. Then, F is totally geodesic.

Algebraic subsets of a BSD invariant under cocompact $\check{\Gamma}$

Proposition 1 (Chan-Mok, JDG 2021) Let D and Ω be BSD, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, $F : D \to \Omega$ be a Φ -equivariant holomorphic map. Then, F is totally geodesic.

Theorem (Chan-Mok, JDG 2021)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, and $Z \subset \Omega$ be an algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $Z/\check{\Gamma}$ is compact. Then, $Z \subset \Omega$ is totally geodesic.

Algebraic subsets of a BSD invariant under cocompact $\check{\Gamma}$

Proposition 1 (Chan-Mok, JDG 2021) Let D and Ω be BSD, $\Phi : \operatorname{Aut}_0(D) \to \operatorname{Aut}_0(\Omega)$ be a group homomorphism, $F : D \to \Omega$ be a Φ -equivariant holomorphic map. Then, F is totally geodesic.

Theorem (Chan-Mok, JDG 2021)

Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, and $Z \subset \Omega$ be an algebraic subset. Suppose there exists a torsion-free discrete subgroup $\check{\Gamma} \subset \operatorname{Aut}(\Omega)$ such that $\check{\Gamma}$ stabilizes Z and $Z/\check{\Gamma}$ is compact. Then, $Z \subset \Omega$ is totally geodesic.

Corollary (Chan-Mok, JDG 2021)

Let $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsion-free cocompact lattice acting on $\Omega \Subset \mathbb{C}^N$, $X_{\Gamma} := \Omega/\Gamma$, $\pi : \Omega \to X_{\Gamma}$ the uniformization map. Let $Y \subset X_{\Gamma}$ be an irreducible subvariety, and $Z \subset \Omega$ be an irreducible component of $\pi^{-1}(Y)$. Suppose $Z \subset \Omega$ is an algebraic subset. Then, $Z \subset \Omega$ is totally geodesic.

Asymptotic Total Geodesy of Embedded Poincaré Disks

Theorem (Chan-Mok [CM21], JDG)

Let $f : (\Delta, \lambda ds^2_{\Delta}) \to (\Omega, ds^2_{\Omega})$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization.

Asymptotic Total Geodesy of Embedded Poincaré Disks

Theorem (Chan-Mok [CM21], JDG)

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Theorem (Chan-Mok [CM21], JDG)

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Theorem implies Proposition 1 by slicing D by totally geodesic disks.

Theorem (Chan-Mok [CM21], JDG)

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Theorem implies Proposition 1 by slicing D by totally geodesic disks.

Embedded Poincaré Disks with $Aut(\Omega)$ -equiv. Tangents

Proposition 2 Let $f_0 : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding. Suppose $Z_0 := f_0(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a generic point $b \in \partial Z_0$.

Theorem (Chan-Mok [CM21], JDG)

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Theorem implies Proposition 1 by slicing D by totally geodesic disks.

Embedded Poincaré Disks with $Aut(\Omega)$ -equiv. Tangents

Proposition 2 Let $f_0 : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding. Suppose $Z_0 := f_0(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a generic point $b \in \partial Z_0$. Then, \exists a holomorphic isometric embedding $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$, $f(\Delta) =: Z$ such that (\dagger) All tangent lines $T_x(Z)$, $x \in Z$, are equivalent under $Aut(\Omega)$.

Theorem (Chan-Mok [CM21], JDG)

Let $f : (\Delta, \lambda ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding, where λ is a positive real constant and $\Omega \Subset \mathbb{C}^N$ is a bounded symmetric domain in its Harish-Chandra realization. Then, f is asymptotically totally geodesic at a general point $b \in \partial \Delta$.

Theorem implies Proposition 1 by slicing D by totally geodesic disks.

Embedded Poincaré Disks with $Aut(\Omega)$ -equiv. Tangents

Proposition 2 Let $f_0 : (\Delta, \lambda \, ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$ be a holomorphic isometric embedding. Suppose $Z_0 := f_0(\Delta) \subset \Omega$ is not asymptotically totally geodesic at a generic point $b \in \partial Z_0$. Then, \exists a holomorphic isometric embedding $f : (\Delta, \lambda \, ds_{\Delta}^2) \to (\Omega, ds_{\Omega}^2)$, $f(\Delta) =: Z$ such that (\dagger) All tangent lines $T_x(Z)$, $x \in Z$, are equivalent under $Aut(\Omega)$.

Proof by rescaling: Compose with $\gamma_i \in Aut(\Omega)$ and take limits.

Ngaiming Mok (HKU)

Total Geodesy of Certain Curves on Tube Domains

Proposition 3

Let Ω be an irreducible bounded symmetric domain of tube type and of rank r; $Z \subset \Omega$ be a local holomorphic curve with $Aut(\Omega)$ -equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Total Geodesy of Certain Curves on Tube Domains

Proposition 3

Let Ω be an irreducible bounded symmetric domain of tube type and of rank r; $Z \subset \Omega$ be a local holomorphic curve with $Aut(\Omega)$ -equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Proof. $\pi : \mathbb{P}T_{\Omega} \to \Omega, \ L \to \mathbb{P}T_{\Omega}$ tautological line bundle. $[\mathscr{S}] \cong L^{-r} \otimes \pi^* E^2, \ E$ dual to $\mathcal{O}(1)$ on the compact dual M of Ω .

 $(2\pi)^{-1}\sqrt{-1}\partial\overline{\partial}\log \|s\|^2 = rc_1(L,\hat{g}_0) - 2c_1(\pi^*E,\pi^*h_0),$

where \hat{g}_0 and h_0 are canonical metrics. ||s(x)|| only depends on the Aut (Ω) -isomorphism type of $T_x(\Omega)$. Thus, ||s|| = constant on Z.

Total Geodesy of Certain Curves on Tube Domains

Proposition 3

Let Ω be an irreducible bounded symmetric domain of tube type and of rank r; $Z \subset \Omega$ be a local holomorphic curve with $Aut(\Omega)$ -equivalent tangent planes spanned by vectors of rank r. Then, $Z \subset \Omega$ is totally geodesic and of rank r (i.e. of diagonal type).

Proof. $\pi : \mathbb{P}T_{\Omega} \to \Omega, \ L \to \mathbb{P}T_{\Omega}$ tautological line bundle. $[\mathscr{S}] \cong L^{-r} \otimes \pi^* E^2, \ E$ dual to $\mathcal{O}(1)$ on the compact dual M of Ω .

$$(2\pi)^{-1}\sqrt{-1}\partial\overline{\partial}\log\|s\|^{2} = rc_{1}(L,\hat{g}_{0}) - 2c_{1}(\pi^{*}E,\pi^{*}h_{0}),$$

where \hat{g}_0 and h_0 are canonical metrics. ||s(x)|| only depends on the $\operatorname{Aut}(\Omega)$ -isomorphism type of $\mathcal{T}_x(\Omega)$. Thus, ||s|| = constant on Z. Hence,

$$0 = rc_1(L, \hat{g}_0) - 2c_1(\pi^* E, \pi^* h_0).$$

 \Leftrightarrow Gauss curvature K(x)=-2/r, and $\sigma\equiv$ 0. \square

Maps inducing the representation $\theta : \check{\Gamma} \hookrightarrow H_0 \subset G_0 = \operatorname{Aut}_0(\Omega)$ Without loss of generality assume $\Omega \supset Z$ smallest BSD containing $Z, i : Y \hookrightarrow Z_{\check{\Gamma}}, \theta := i_*\pi_1(Y) = \check{\Gamma} \subset H_0$. By the proof of Nadel's Theorem, H_0 is a semisimple Lie group without compact factors acting on Ω . Maps inducing the representation $\theta : \check{\Gamma} \hookrightarrow H_0 \subset G_0 = \operatorname{Aut}_0(\Omega)$ Without loss of generality assume $\Omega \supset Z$ smallest BSD containing $Z, \imath : Y \hookrightarrow Z_{\check{\Gamma}}, \theta := \imath_* \pi_1(Y) = \check{\Gamma} \subset H_0$. By the proof of Nadel's Theorem, H_0 is a semisimple Lie group without compact factors acting on Ω . Write $L \subset H_0$ for a maximal compact subgroup. Let $f : Y \to \check{\Gamma} \setminus H_0/L =: S_{\check{\Gamma}} \hookrightarrow X_{\check{\Gamma}}$ be any smooth map inducing θ .

Maps inducing the representation $\theta : \check{\Gamma} \hookrightarrow H_0 \subset G_0 = \operatorname{Aut}_0(\Omega)$

Without loss of generality assume $\Omega \supset Z$ smallest BSD containing $Z, i: Y \hookrightarrow Z_{\check{\Gamma}}, \theta := i_*\pi_1(Y) = \check{\Gamma} \subset H_0$. By the proof of Nadel's Theorem, H_0 is a semisimple Lie group without compact factors acting on Ω . Write $L \subset H_0$ for a maximal compact subgroup. Let $f: Y \to \check{\Gamma} \setminus H_0/L =: S_{\check{\Gamma}} \hookrightarrow X_{\check{\Gamma}}$ be any smooth map inducing θ . Since (Ω, ds_{Ω}^2) is a Cartan-Hadamard manifold, i.e., a simply connected complete Riemannian manifold of nonpositive sectional curvature, the center of gravity argument gives a point $x \in \Omega$ fixed by L.

Maps inducing the representation $\theta : \check{\Gamma} \hookrightarrow H_0 \subset G_0 = \operatorname{Aut}_0(\Omega)$

Without loss of generality assume $\Omega \supset Z$ smallest BSD containing $Z, \imath : Y \hookrightarrow Z_{\check{\Gamma}}, \theta := \imath_* \pi_1(Y) = \check{\Gamma} \subset H_0$. By the proof of Nadel's Theorem, H_0 is a semisimple Lie group without compact factors acting on Ω . Write $L \subset H_0$ for a maximal compact subgroup. Let $f : Y \to \check{\Gamma} \setminus H_0/L =: S_{\check{\Gamma}} \hookrightarrow X_{\check{\Gamma}}$ be any smooth map inducing θ . Since (Ω, ds_{Ω}^2) is a Cartan-Hadamard manifold, i.e., a simply connected complete Riemannian manifold of nonpositive sectional curvature, the center of gravity argument gives a point $x \in \Omega$ fixed by L. Regard H_0/L as the orbit $H_0x \subset \Omega = G_0/K$, $L \subset K = \text{Isot}_x(\Omega, ds_{\Omega}^2)$, hence $S_{\check{\Gamma}} \hookrightarrow X_{\check{\Gamma}} := \check{\Gamma} \setminus \Omega = \check{\Gamma} \setminus G/K$ as a real analytic submanifold.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_0 acts on Ω .

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_0 acts on Ω . For any $x \in X$, we have

 $\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_0 acts on Ω . For any $x \in X$, we have

 $\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$

By homotopy $\int_{Y} (i^* \omega)^m = \int_{Y} (f^* \omega)^m$. The first integral gives $m! \operatorname{Vol}(Y, \omega|_Y) > 0$.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_0 acts on Ω . For any $x \in X$, we have

 $\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$

By homotopy $\int_{Y} (i^*\omega)^m = \int_{Y} (f^*\omega)^m$. The first integral gives $m! \operatorname{Vol}(Y, \omega|_Y) > 0$. A contradiction would arise if we had strict inequality of dimensions. Hence, equality holds, Z is homogeneous under H_0 , and H_0 is of Hermitian type.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_0 acts on Ω . For any $x \in X$, we have

 $\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$

By homotopy $\int_{Y} (i^*\omega)^m = \int_{Y} (f^*\omega)^m$. The first integral gives $m! \operatorname{Vol}(Y, \omega|_Y) > 0$. A contradiction would arise if we had strict inequality of dimensions. Hence, equality holds, Z is homogeneous under H_0 , and H_0 is of Hermitian type. Thus, $Z \subset \Omega$ is the image of an equivariant holomorphic map between bounded symmetric domains.

Denote by ω the Kähler form of the canonical KE metric on $X_{\check{\Gamma}}$. H_0 acts on Ω . For any $x \in X$, we have

$$\dim_{\mathbb{R}}(S_{\check{\Gamma}}) \leq \dim_{\mathbb{R}}(H_0x) \leq \dim_{\mathbb{R}} Z = \dim_{\mathbb{R}} Y := 2m.$$

By homotopy $\int_{Y} (i^*\omega)^m = \int_{Y} (f^*\omega)^m$. The first integral gives $m! \operatorname{Vol}(Y, \omega|_Y) > 0$. A contradiction would arise if we had strict inequality of dimensions. Hence, equality holds, Z is homogeneous under H_0 , and H_0 is of Hermitian type. Thus, $Z \subset \Omega$ is the image of an equivariant holomorphic map between bounded symmetric domains. By Proposition 1, $Z \subset \Omega$ is totally geodesic.

Existential Closedness Problem

The original Existential Closedness Problem, raised by Zilber, asks for a minimal set of conditions on an algebraic subvariety of $V \subset \mathbb{C}^n \times (C^*)^n$ to guarantee that $V \cap \text{Graph}(\exp)$ is Zariski dense in V. It ties up with the André-Oort and the Zilber-Pink conjectures in Diophantine geometry.

ECP for Shimura Varieties

Theorem (Eterovic-Zhao 2021) Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsionfree **arithmetic** lattice. Write $X_{\Gamma} := \Omega/\Gamma$, identified as a Zariski open subset $X_{\Gamma} \subset \overline{X_{\Gamma}}$ of its minimal (projective) compactification $\overline{X_{\Gamma}}$, and denote by $q : \Omega \to X_{\Gamma}$ the uniformization map. Write $\pi_1 : \mathbb{C}^N \times X_{\Gamma} \to \mathbb{C}^N$ for the canonical projection map onto the first Cartesian factor.

ECP for Shimura Varieties

Theorem (Eterovic-Zhao 2021) Let $\Omega \Subset \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsionfree arithmetic lattice. Write $X_{\Gamma} := \Omega/\Gamma$, identified as a Zariski open subset $X_{\Gamma} \subset \overline{X_{\Gamma}}$ of its minimal (projective) compactification $\overline{X_{\Gamma}}$, and denote by $q : \Omega \to X_{\Gamma}$ the uniformization map. Write $\pi_1 : \mathbb{C}^N \times X_{\Gamma} \to \mathbb{C}^N$ for the canonical projection map onto the first Cartesian factor. Let now $V \subset \mathbb{C}^N \times X_{\Gamma}$ be an irreducible algebraic subvariety such that $\pi_1(V)$ is Zariski dense in \mathbb{C}^N .

ECP for Shimura Varieties

Theorem (Eterovic-Zhao 2021) Let $\Omega \in \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsionfree arithmetic lattice. Write $X_{\Gamma} := \Omega/\Gamma$, identified as a Zariski open subset $X_{\Gamma} \subset \overline{X_{\Gamma}}$ of its minimal (projective) compactification $\overline{X_{\Gamma}}$, and denote by $q : \Omega \to X_{\Gamma}$ the uniformization map. Write $\pi_1 : \mathbb{C}^N \times X_{\Gamma} \to \mathbb{C}^N$ for the canonical projection map onto the first Cartesian factor. Let now $V \subset \mathbb{C}^N \times X_{\Gamma}$ be an irreducible algebraic subvariety such that $\pi_1(V)$ is Zariski dense in \mathbb{C}^N . Then, $\pi_1(V \cap \operatorname{Graph}(q))$ is Zariski dense in \mathbb{C}^N , and $V \cap \operatorname{Graph}(q)$ is Zariski dense in V.

ECP for Shimura Varieties

Theorem (Eterovic-Zhao 2021) Let $\Omega \in \mathbb{C}^N$ be a bounded symmetric domain in its Harish-Chandra realization, and $\Gamma \subset \operatorname{Aut}(\Omega)$ be a torsionfree arithmetic lattice. Write $X_{\Gamma} := \Omega/\Gamma$, identified as a Zariski open subset $X_{\Gamma} \subset \overline{X_{\Gamma}}$ of its minimal (projective) compactification $\overline{X_{\Gamma}}$, and denote by $q : \Omega \to X_{\Gamma}$ the uniformization map. Write $\pi_1 : \mathbb{C}^N \times X_{\Gamma} \to \mathbb{C}^N$ for the canonical projection map onto the first Cartesian factor. Let now $V \subset \mathbb{C}^N \times X_{\Gamma}$ be an irreducible algebraic subvariety such that $\pi_1(V)$ is Zariski dense in \mathbb{C}^N . Then, $\pi_1(V \cap \operatorname{Graph}(q))$ is Zariski dense in \mathbb{C}^N , and $V \cap \operatorname{Graph}(q)$ is Zariski dense in V.

The proof involves studying the Shilov boundary of $\Omega \in \mathbb{C}^N$.

Ngaiming Mok (HKU)

Complex Function Fields

Bibliography

Bakker, J.; Tsimerman, J.: The Ax-Schanuel conjecture for variations of Hodge structures, *Invent. Math.* **217** (2019), 77–94.

Bakker, J.; Tsimerman, J.: Lectures on the Ax-Schanuel conjecture, in Arithmetic Geometry of Logarithmic Pairs and Hyperbolicity of Moduli Spaces, Hyperbolicity in Montréal, Springer Verlag 2020.

Baldi, G.; Ullmo, E.: Special subvarieties of non-arithmetic ball quotients and Hodge Theory.

Bombieri, E.: Algebraic values of meromorphic maps, Invent. Math. 10 (1970), 267-287.

Chan, S.-T.; Mok, N.: Asymptotic total geodesy of local holomorphic curves exiting a bounded symmetric domain and applications to a uniformization problem for algebraic subsets, *J. Diff. Geom.* (2021).

Eterović, S.; Zhao, R.: Algebraic varieties and automorphic functions. Preprint 2020, arXiv:2107.10392.

Hwang, J.-M.; To, W.-K.: Volumes of complex analytic subvarieties of Hermitian symmetric spaces, *Amer. J. Math.* **124** (2002), 1221–1246.

Klingler, B.; Ullmo, E.; Yafaev, A.: The hyperbolic Ax-Lindemann- Weierstrass conjecture, *Publ. Math. IHES* **123** (2016), 333–360.

Lang, S.: Introduction to transcendental numbers, Addison-Wesley Pub. Co., Reading,

Mass.-London-Don Mills, Ont. 1966.

Ngaiming Mok (HKU)

Complex Function Fields

Lelong, P.: Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Paris-London-New York 1968.

Mok, N.: Aspects of Khler geometry on arithmetic varieties. Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 335–396, *Proc. Sympos. Pure Math.* **52**, Part 2, Amer. Math. Soc., Providence, RI, 1991.

Mok, N.: Rigidity problems on compact quotients of bounded symmetric domains, AMS/IP Studies in Advanced Mathematics **39** (2007), 201–249.

Mok, N.; To, W.-K.: Eigensections on Kuga families of abelian varieties and finiteness of their Mordell-Weil groups, *J. Reine Angew. Math.* **444** (1993), 29–78.

Mok, N.; Ng, S.-C.: Multiplicities of the Betti map associated to a section of an elliptic surface from a differential-geometric perspective, arXiv:2206.09405

Mok, N.: Zariski closures of images of algebraic subsets under the uniformization map on finite-volume quotients of the complex unit ball, *Compos. Math.* **155** (2019), 2129–2149.

Mok, N.; Pila, J.; Tsimerman, J.: Ax-Schanuel for Shimura varieties. Ann. of Math. 189 (2019), 945–978.

Mok, N.; Zhong. J.-Q.: Compactifying complete Kähler-Einstein manifolds of finite topological type and bounded curvature, *Annals of Math.* **129** (1989), 427–470.

Peterzil, Y.; Starchenko, S. Tame complex analysis and o-minimality, *Proceedings of the International Congress of Mathematicians*, Volume II, 58–81, Hindustan Book Agency, New Delhi, 2010.

Pila, J.; Tsimerman, J.: Ax-Schanuel for the *j*-function, *Duke Math. J.* **165** (2016), 2587–2605. Pila, J.; Wilkie, A.J.: The rational points of a definable set, *Duke Math. J.* **133** (2006), 591–616.

Pila, J.; Zannier, U.: Rational points in periodic analytic sets and the Manin-Mumford conjecture, *Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.* **19** (2008), 149–162.
Tsimerman, J.: The André-Oort conjecture for A_g, *Ann. of Math.* 187 (2018), 379–390.

Tsimerman, J.: Functional transcendence and arithmetic applications, *Proceedings of the ICM–Rio de Janeiro 2018*, Volume II, Invited lectures, 435–454, World Sci. Publ., Hackensack, NJ, 2018.

THANK YOU!!