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Part I: Background
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Singular metric spaces

In the field of “Analysis and geometry on metric (measure) spaces”, we
regard C2-Riemannian manifolds as smooth metric spaces and all the
other spaces are considered as singular metric spaces.

In particular, the following well-known classes of metric spaces are
considered as singular:

Riemannian manifolds with C1 or Lipschitz Riemannian metric

All subRiemannian manifolds and Finsler manifolds

Alexandrov spaces (with bounded upper/lower curvature)

Fractional spaces (including graphs, self-similar spaces)

Weighted Riemannian manifolds or infinite-dimensional metric spaces

Metric spaces with bounded upper/lower “Ricci” curvature
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In a wide sense, research related to analysis and geometry in the
framework of singular metric spaces belong to the field of

Analysis and geometry on metric spaces

Sometimes, people also called it nonsmooth analysis or nonsmooth
geometry. The initiation of the research on singular metric spaces dates
back to the 1990s.

It is worth to point out that in doing Riemannian geometry, one naturally
encounters non-smooth spaces

When taking limits (such as Gromov-Hausdorff) of Riemannian
manifolds (procedure used often, e.g. contradiction arguments, blow
up arguments, singularities in geometric flows)

When taking quotients (or cones, or suspensions, or foliations) of
Riemannian manifolds

Mostow’s strong rigidity, Margulis super-rigidity, ...
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Motivation I: Lipschitz Analysis

Basic question (Early 1990s)

What kind of metric spaces are locally or globally bi-Lipschitz equivalent
with the standard Euclidean spaces?

Seminal works:

David-Semmes (conferences proceedings 1990): Strong A∞ weights,
Sobolev inequalities and quasiconformal mappings

Semmes (Rev. Mat. Ibero. 1996): On the nonexistence of
bi-Lipschitz parameterizations and geometric problems about
A∞-weights

Main motivation: Develop harmonic analysis (such as CZ theory) and
geometric measure theory (such as uniform rectifiability) to more general
spaces.
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Motivation II: Harmonic mappings and metric geometry

Basic question (Middle 1990s)

Extend Riemannian geometry and geometric analysis to singular metric
spaces.

Seminal works:

Gromov-Schoen (Publ. IHES 1992)

Korevaar-Schoen (Comm. Anal. Geom. 1993)

Cheeger-Colding (J. Diff. Geom. 1997, 2000)

Cheeger (GAFA 1999)

Lott-Villani-Sturm (Ann. Math. 2009, Acta Math. 2006)

Ambrosio-Gigli-Savaré (Invent. Math. 2014, Duke Math. J. 2014)

......
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Motivation III: Geometric measure theory

Basic question (Late 1990s)

Extend the geometric measure theory to singular metric spaces. In
particular, realize De Giorgi’s idea to give a new approach to Plateau’s
problem ( extending the Federer-Fleming theory of currents).

Seminal works:

Ambrosio-Kirchheim (Acta Math. 2000): Currents in metric spaces

Ambrosio-Kirchheim (Math. Ann. 2000): Rectifiable sets in metric
and Banach spaces

Remark: One crucial motivation was to simplify the FF theory, and to
clarify the fact that its main results rely heavily on measure theory and (to
a certain extent) not on multilinear algebra and on the theory of forms.
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Motivation IV: Geometric function theory

Basic question (Middle 1990s)

Extend the theory of quasiconformal mappings to singular metric spaces.
In particular, give a new (and correct) proof of the Margulis-Mostow’s
theory of quasiconformal mappings in subRiemannian manifolds.

Seminal works

Heinonen-Koskela (Invent. Math. 1995): Definitions of
quasiconformality

Heinonen-Koskela (Acta. Math. 1998): Quasiconformal maps in
metric spaces with controlled geometry

Remark: There is a “small gap” in the original proof of Mostow for his
celebrated strong rigidity theorem.
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Geometric parametrization problem

Basic question (Geometric parametrizaiton of metric spaces)

Given a metric space X, when does it admit (locally or globally) a “good
geometric parametrization” from the model Euclidean spaces?

Good (Homeomorphic) Geometric Parametrization:
bi-Lipschitz mappings distort the distance up to a bounded multiplicative constant

Quasisymmetric mappings map “round object” to “quasi-round object” (e.g. send balls
to ellipsoid)

Quasiconformal mappings map “round object” to “quasi-round object” at infinitesimal
scale
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Motivation: uniformization theorem

Example 1 (Riemann uniformization theorem)

Each simply connected Riemann surface is conformally equivalent to one
of the three model spaces: the unit disk D2, the complex plane C, or the
Riemann sphere S2.
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Uniformization in higher dimensions

Liouville breaks our dreams to find an analogy of this result in higher
dimensions: conformal mappings are rigid in high dimensions.

Figure from Google Images

In order to find similar results in higher dimensions, we have to enlarge the
class of mappings that are allowed for classification.

{
Conformal mappings

}
$
{

Nice Geometric mappings
}
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Motivation: geometric function theory

Geometric function theory is a field where we study geometry of mappings,
that is, mappings or deformations between subsets of the Euclidean spaces
Rn, and more generally between manifolds or other geometric objects.

Moral of geometric function theory: in order to understand (the geometry
of) the space, one can alternatively understand its mappings.

Euclidean space
a good geometric mapping f

y a metric space X

Figure from Google Images
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Successfully applications of quasiconformal mappings I

PDE Gehring’s improved regularity and higher integrabilty.

Complex dynamics Astala’s quasiconformal area distortion estimates.

Inverse problems Astala-Päivärinta’s solution for the Calderon’s inverse
conductivity problem.

Differential geometry Mostow’s celebrated strong rigidity of locally
symmetric spaces. (uniqueness of hyperbolic structures for
n ≥ 3).

Geometric topology Sullivan’s uniformisation theorem - the existence of
quasiconformal structures on topological n-manifolds.

Tukia-Väisälä’s “quasiconformal geometric topology”.

Connes-Sullivan-Teleman’s theory of characteristic classes on
topological manifolds.
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Successfully applications of quasiconformal mappings II

Mathematicla Physics Donaldson–Sullivan’s “quasiconformal Yang-Mills
theory”.

Analysis on metric spaces Heinonen-Koskela’s theory of quasiconformal
mappings in metric spaces with controlled geometry.

The above is an in-complelte list of the very successful applications of
quasiconformal mappings. Many other important applications (such as
Nonlinear potential theory, nonlinear elasticity, quasiconformal group
action, geometric group theory, ...) should also be mentioned.

Conclusion: A general theory of quasiconformal mappings beyond
Riemannian manifolds is necessary and remarkable.
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Part II: Quasiconformal Jacobian problem
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The quasiconformal Jacobian problem

Quasiconformal Jacobian problem (David-Semmes, 1990)

Which nonnegative functions are comparable to the Jacobian determinant
Jf = det(Df) of a quasiconformal mapping f : Rn → Rn?

Due to Burago-Kleiner (GAFA 98) and McMullen (GAFA 98), there
exists a weight ω on Rn such that both ω and ω−1 belong to
L∞(Rn), but there is no bi-Lipschitz mapping f : Rn → Rn such that
Jf (x) = ω(x) a.e. on Rn.

When n = 2, the quasiconformal Jacobian problem is equivalent to
the well-known bi-Lipschitz parametrization problem: which metric
spaces are bi-Lipschitz equivalent to Rn, n ≥ 2?
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An interesting application of the QC Jacobian problem

Global bi-Lipschitz parametrization of conformally flat Riemannian
manifolds (Bonk–Heinonen–Saksman, Duke Math. J. 2008).

Observation (Bonk–Heinonen–Saksman, Duke Math. J. 2008)

Consider a conformal deformation g of Rn, i.e. g = e2ug0 for some smooth
u : Rn → R. Then

X = (Rn, g)
bi-Lipschitz
w (Rn, g0),

if and only if the weight w = enu is comparable to a quasiconformal
Jacobian.
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Some basic facts about quasiconformal Jacobian

By a deep result of Gehring (Acta Math. 1973), the Jacobian of a
quasiconformal map is an A∞ weight, i.e., there exist ε > 0 and
C ≥ 1 such that(∫

B
ω1+ε(x)dx

)1/(1+ε)
≤ C

∫
B
ω(x)dx (1)

for each open ball B ⊂ Rn.

Due to Reimann (CMH 1974), log(Jf ) ∈ BMO(Rn), where
BMO(Rn) consists of all locally integrable functions u in Rn such
that

sup
B

∫
B
|u(x)− uB|dx <∞.

Moreover, quasiconformal maps preserve BMO functions (and indeed
also A∞ measures).
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An A1 weight fails to be QC Jacobian

Example (Bishop, Contem. Math. 2007)

There is an A1 weight ω on R2 which is not comparable to any
quasiconformal Jacobian.

Recall that a locally integrable nonnegative function ω is called an A1

weight if there is a C <∞ so that

−
∫
B
ω ≤ CessinfB ω

for each open ball B ⊂ R2.

Open question: are A1 weights preserved by quasiconformal maps?
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Strong A∞ weights

In order to investigate the QC Jacobian problem, David and Semmes
introduced the class of strong A∞ weight and studied its connection with
functional analysis, harmonic analysis and geometric measure theory,
leading to the so-called strong A∞ geometry.

Theorem (Bonk-Heinonen-Saksman, Contem. Math. 2004)

Let n ≥ 2, 0 < α < n and let u belong to the Bessel potential space
Lα,

n
α (Rn). Then ω = enu is a strong A∞ weight with data depending only

on n, α and the Lα,
n
α -norm of u.

Open question (BHS, Contem. Math. 04): is ω as in the above theorem
actually comparable to a quasiconformal Jacobian?

With C.-L. Xiang, we made some small progress in the easier case α = n
2

(which is related to the operator (−∆)
n
2 ).
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A positive result in dimension two

Theorem (Bonk-Heinonen-Saksman, Contem. Math. 2004)

Let u be a locally integrable function in R2 with distributional gradient
∇u ∈ L2(R2). Then e2u is comparable to a quasiconformal Jacobian.

The statement is quantitative in the sense that the distortion of the
quasiconformal map and the comparability constant depends only on
the L2-norm of ∇u.

Even in dimension n = 2, when 0 < α < 1, the Open Question
remains unsolved.

C.-Y. Guo (SDU) Geometric parametrization of MS Shanghai, August 2022 23 / 59



Key ingredient: a theorem of Fu

Theorem (Fu, Indiana Univ. Math. J. 1998)

Let X be a complete Riemannian 2-manifold that is homeomorphic to R2. There
are absolute constants ε0 > 0 and L0 > 0 with the following property: if the
integral (Gauss) curvature of X is less than ε0, then X is bi-Lipschitz equivalent
to R2 with bi-Lipschitz constant L0.

Bonk and Lang (Math. Ann. 2003) proved that ε0 = 2π is the optimal
bound.

Lemma (approximate harmonic decomposition)

Let u : Rn → R be a smooth function with compact support. For each ε > 0,
there exists a decomposition u = s+ b into two compactly supported smooth
functions such that ‖∆s‖1 ≤ ε and

‖b‖∞ ≤
C

ε
‖∇u‖22.
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Proof of BHS’s theorem in dimension 2

Consider the Riemannian manifold Xu = (Rn, e2ug0)

For any b ∈ L∞, Xu−b and Xu are bi-Lipschitz equivalent with
L = e‖b‖∞

Decompose u = s+ b with ‖∆s‖1 < ε0

The Gauss curvature of Xs(= Xu−b) = (Rn, e2sg0) is

Ks = −e−2s∆s

and so ∫
Xs

|Ks|dVs =

∫
Rn
|∆s|dx < ε0.

By Fu’s theorem, Xs is bi-Lipschitz equivalent to Rn and so is Xu.
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Paneitz operator and Q-curvature

In dimension 4, there is a Paneitz operator P = ∆2+ lower order term.

On (R4, g0), P = ∆2

If g1 = e2ug0, then

P0u = Q1e
4u −Q0 = Q1e

4u

and so ‖P0u‖1 = ‖Q1e
4u‖1.

Above, Q is the Q-curvature from conformal geometry.

However, to mimic the 2d proof in 4d, we need

a version of Fu’s theorem in higher dimensions

decompose u as u = s+ b, with ‖b‖∞ < 0 and

‖∆2s‖1 < ε0.
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Logarithmic potentials

A function u : Rn → [−∞,∞] is said to be a logarithmic potential if u is
finite almost everywhere and if there is a signed Radon measure µ of finite
total variation on Rn such that

u(x) = Lµ(x) := −
∫
Rn

log |x− y|dµ(y)

for almost every x ∈ Rn.

A potential Lµ is finite almost everywhere if and only if∫
Rn

log+ |y|d|µ|(y) <∞.

Lµ ∈ BMO(Rn) and thus it lies in Lploc(R
n) for all p ≥ 1.
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QC Jacobian via logarithmic potentials

Theorem (Bonk-Heinonen-Saksman, Duke Math. J. 2008)

For each n ≥ 2, there exists a positive constant cn with the following
property. If µ is a signed measure on Rn so that Lµ is finite a.e. and
‖µ‖ < cn, then the weight ω = enu for the logarithmic potential u = Lµ is
comparable to a quasiconformal Jacobian.

Two interesting challenging open problems:

BHS conjecture that cn = 1 for all n ≥ 2; when n = 2, it is known
due to Bonk-Lang (Math. Ann. 2003)

BHS asks whether Theorem remains valid if we only assume
‖µ+‖ < cn and ‖µ−‖ <∞?
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Q-curvature

The Green’s function of ∆ in dimension 2 and ∆2 in dimension 4 is

G(x, y) = cn log
1

|x− y|
.

So in dimension 2 and 4, if g = e2u|dx|2, then

u(x) = cn

∫
Rn

log
|y|
|x− y|

Q(y)enu(y)dy + C, (2)

where in dimension 2, Q is the Gaussian curvature and in dimension 4, Q
is the so-called Q-curvature.

In dimension 4, if M is CFM, then (4d Gauss-Bonnet-Chern formula)

4π2χ(M) =

∫
M
Q.
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Fu’s theorem in higher dimensions

Theorem (Bonk-Heinonen-Saksman, Duke Math. J. 2008)

There exists an ε > 0 such that if g = e2ug0 is a smooth normal metric on
Rn for n even and if ∫

Rn
|Q| < ε,

then (Rn, e2ug0) is bi-Lipschitz equivalent to (Rn, g0).

The result holds for all even n and when n = 2, Q is the
scalar/Gaussian curvature

Wang (IMRN 2012) improved this result for an optimal bound on∫
Q+

Chang-Prywes-Yang (Adv. Math. 2022) extended this result to the
model space S4 with any positive Yamabe metric g
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Nontriviality of the bi-Lipschitz parametrization

In dimension 2

If (M, g) = (R2, g), then for some ‖µ‖∞ < 1,

g = a(z)
∣∣∣dz + µ(z)dz̄

∣∣∣.
Solving the Beltrami equation for µ, we conclude that every metric g
is conformally equivalent to (C, |dz|2)

However, without further assumption on g (such as integral of the Gauss
curvature is small), the metric g is not necessarily bi-Lipschitz equivalent
to our model space.

Due to Siebenmann-Sullivan, for each integer n ≥ 5, there are finite
n-dimensional polyhedra that are topological manifolds but not locally
bi-Lipschitz equivalent to the ball in Rn (w.r.t. the natural intrinsic
metric in the polyhedron).

C.-Y. Guo (SDU) Geometric parametrization of MS Shanghai, August 2022 31 / 59



Connection with isoperimetric inequalities

Theorem (Wang, Adv. Math. 2015)

If (Mn, g) = (Rn, g = e2u|dx|2) is a complete noncompact even dimensional
manifold. Let Q+ and Q− denote the positive and negative part of Qg. Suppose
g = e2u|dx|2 is normal, i.e.,

u(x) = c−1n

∫
Rn

log
|y|
|x− y|

Qg(y)dvg(y) + C.

Then if the Q-curvature satisfies

α := c−1n

∫
M

Q+dvg < 1

and

β := c−1n

∫
M

Q−dvg <∞,

then (M, g) satisfies the isoperimetric inequality with isoperimetric constant
depending only on n, α and β.
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QC flow of Reimann

Let V : Rn × [0,∞)→ Rn be a time-dependent vector field in Rn and
consider the ODE

df

dt
(x, t) = V (f(x, t), t), f(x, 0) = x.

Theorem (Reimann, Invent. Math. 1976)

If V is continuous and W 1,1
loc and SV = 1

2(DV +DV T )− 1
ndiv(V )In×n is

in L∞, then f exists and is e2ct-quasiconformal with c = ‖SV ‖∞.

SV was first introduced by Ahlfors to measure quasiconformal
deformations and is called the Ahlfors conformal strain tensor

In dimension n = 2, SV = ∂z̄V
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The Jacobian formula for flows

Key proposition (Bonk-Heinonen-Saksman, Duke Math. J. 2008)

If f is the flow map of a continuous Sobolev vector field V with
‖SV ‖∞ <∞, then

log Jft =

∫ t

0
div(V )(fs(x), s)ds,

where Jft is the Jacobian determinant of Dft.

If g = e2ug0 and f : Rn → Rn is K-QC with Jf ≈ e2u, then f is
(quantitatively) bi-Lipschitz from (Rn, g) to (Rn, g0)

On R4, ∆2u = Qe4u, so if ∆2 is invertible by an operator G, then u
can be expressed as G(Qe4u)

So the strategy is to construct a vect. field V with ‖SV ‖∞ <∞ and
div(V ) ≈ G(Qe4u).
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Construction of the vector field V

Let v(x, y) = − log |x− y|(x− y). Then

div(v(x, y)) ≈ −n log |x− y|
|Sv| is uniformly bounded

The essential idea is that v corresponds to the logarithm potential of the
Dirac measure δ in the sense that

Lδ =
1

n
div(v) + b+ c,

where b is L∞ and c is constant.

For a general logarithm potential of the form Lϕ with ϕ = Qenu, it
suffices to consider

V (x) :=

∫
Rn
v(x, y)ϕ(y)dy.
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BLD parametrization

Theorem (Heinonen-Sullivan, Duke Math. J. 02)

Under some natural topological constrains on X, X is locally branched
Euclidean if and only if it supports a Poincaré inequality and the
Cartan-Whitney presentations exist locally on X.

Here locally branched Euclidean refers to admit a local BLD-maps
into Rn. Roughly speaking, BLD maps are branched version of
bi-Lipschitz map in the sense that they quasi-preserve length of
(nonconstant) curves.

Under higher Sobolev regularity for the Cartan-Whitney presentation,
Heinonen and Keith (Publ. IHES 2011) proved the existence of local
bi-Lipschitz parametrization.
Topological + analytical → bi-Lipschitz parametrization
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More on BLD Euclidean spaces

Heinonen-Rickman (Duke Math. J. 02)

A locally BLD-Euclidean space is a Lipschitz manifold outside a close
singular set of topological dimension at most n− 2

Open Question: Whether locally BLD-Euclidean spaces are
bi-Lipschitz embeddable in some finite-dimensional Euclidean spaces?

Conjecture: a locally BLD-Euclidean space X is locally metrically
orientable.

Open Question: Whether the branch set of an L-BLD map has
Hausdorff dimension strictly less than the dimension of the space?

Guo and Willliams [arXiv 2019] proved that

The answer to the two open questions are affirmative, but, the
conjecture is false.
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Part III: Uniformization of metric surfaces
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Necessary conditions for bi-Lipschitz parametrization

If X is bi-Lipschitz equivalent to D or S2, then

X is Ahlfors 2-regular: C−1r2 ≤ H2 (B(x, r)) ≤ Cr2;

X is linearly locally connected (LLC).

The LLC condition restricts geometry: no cusps, no neck-pinch.

Example 2 (Laakso, Geom. Funct. Anal. 02’)

There exists a metric space X, Ahlfors 2-regular, LLC, homeomorphic to
D such that X does not bi-Lipschitz embed into any Hilbert space.
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Quasisymmetric uniformization of metric spheres

Theorem (Bonk-Kleiner, Invent. Math. 02’)

A metric space homeomorphic to S2 which is Ahlfors 2-regular and LLC is
quasisymmetric to S2.

The Bonk-Kleiner theorem has important application in Cannon’s
conjecture in geometric group theory (see Bonk’s ICM talk and
Kleiner’s ICM talk)

There are many other uniformization results for fractal spaces,
especially on Sierpiński type spaces: Bonk (Amer. J. Math. 09,
Invent. Math. 11, Ann. Math. 13), Merenkov (Invent. Math. 10),
Ntalampekos-Younsi (Invent. Math. 2020)
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Quasiconformal uniformization of metric surfaces

Theorem (Rajala, Invent. Math. 17’)

There exists a quasiconformal mapping f : X → Ω ⊂ R2 if and only if X
is reciprocal.

Rajala’s Theorem =⇒ Bonk-Kleiner’s Theorem;

The essential idea of Rajala relies on some old techniques of Gehring
and Vaisala, which essentially uses the close connection between
planar analytic function and (real-valued) harmonic function.
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The reciprocal condition of Rajala

Definition (Reciprocal)

A metric space X is called reciprocal if for every x ∈ X and every R > 0
with X\B(x,R) 6= ∅ we have

lim
r→0

Mod(B(x, r), X\B(x,R), B(x,R)) = 0 (3)

and there exists κ > 0 such that every closed topological square Q ⊂ X
with boundary edges ξ1, ξ2, ξ3, ξ4 in cyclic order satisfies

Mod(ξ1, ξ3, Q) ·Mod(ξ2, ξ4, Q) ≤ κ. (4)

One always has

Mod(ξ1, ξ3, Q) ·Mod(ξ2, ξ4, Q) ≥ κ−1. (5)

C.-Y. Guo (SDU) Geometric parametrization of MS Shanghai, August 2022 42 / 59



A new approach via parametrized Plateau’s problem

The parametrized Plateau problem

Given a Jordan curve Γ in a metric space X, is there a disc-type surface
that minimizes the area of all such surfaces with boundary Γ?

Figure from Google Images
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Solutions to Plateau’s problem in metric spaces

Theorem (Lytchak-Wenger, ARMA 2017)

The parametrized Plateau problem is solvable in all proper metric spaces.

Some further extensions:

Guo and Wenger (Comm. Anal. Geom. 2020) solved the Plateau
problem also in certain locally non-compact metric spaces including
all dual Banach spaces and Hadamard spaces

Fitzi and Wenger (J. Reine Angew. Math. 2021) considered area
minimizers with bounded genus

More recently, Creutz-Fitzi (arXiv 2021) considered area minimizers
with bounded genus for singular curve Γ ⊂ X
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Geometric parametrization via Plateau’s problem

Connection: we may regard solutions u of the Plateau problem as good
geometric parametrization, provided that u is topologically nice (e.g.
injectivity) and analytically nice (e.g. regularity)

{
Regularity of area minimizing

}
!

{
Regularity of energy minimizing

}
!

{
Regularity of quasiconformal mapping

}
Topological property of u Bonk-Kleiner’s quasisymmetric uniformization
theorem (2002), Rajala’s quasiconformal uniformization theorem (2017)

Analytic property of u regularity of harmonic mappings in singular
metric setting
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Bonk-Kleiner’s QS uniformization via Plateau’s problem

Theorem (Lytchak-Wenger, Duke Math. J. 2020)

Let X be a geodesic metric space homeomorphic to D and such that
l(∂X) <∞. If X is Ahlfors 2-regular and LLC, then X is quasisymmetric
to D.

Main steps:

There exists u ∈ Λ(∂X) such that u is energy minimizing in Λ(∂X)
and hence is

√
2-qc and u is continuous in D;

Show that u is injective and thus it is a quasiconformal
homeomorphism;

The method of Heinonen-Koskela (Acta Math. 98) yield upgrade to
quasisymmetric.
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Topological consequence for energy minimizers

Key proposition (Lytchak-Wenger, Duke Math. J. 2020)

Let X be a geodesic metric space homeomorphic to D, and let u : D→ X
be a continuous map. If u is an energy minimizer among all possible
candidates for the Plateau problem, then u is monotone.

Recall that a continuous map u : D→ X is monotone if u−1(x) is a
connected set for each x ∈ X.

When X is a topological disk, u is monotone if and only if it is the
uniform limit of homeomorphisms un : D→ X.
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Rajala’s QC uniformization via Plateau’s problem

Theorem (Meier-Wenger, preprint 2021)

Let X be a locally geodesic metric space homeomorphic to R2 and of
locally finite Hausdorff 2-measure. If Ω ⊂ X is a Jordan domain of finite
boundary length, then there exists a continuous, monotone surjection
u : D→ Ω such that

Mod(Γ) ≤ KMod(u ◦ Γ). (6)

Meier-Wenger Theorem =⇒ Rajala’s QC uniformization theorem

If u : D→ Ω is a homeomorphism with (6), then it is called a
geometric quasiconformal map and it is equivalent to the analytic
definition

There is a further new proof by Ntalampekos-Romney (Duke Math.
J. 2022) via polyhedral approximation of metric surfaces.
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Key ingredient of Meier-Wenger

Key ingredient (Meier-Wenger, 2021)

Let X be a locally geodesic metric space homeomorphic to D and let
Γ ⊂ X be a Jordan curve. Let u : D→ X be a energy minimizing
candidate. Then for every ε > 0, there exists δ > 0 such that
osc(u, z, δ) < ε for every z ∈ D.

Recall that osc(u, z, δ) := inf{diam(u(E)) : E ⊂ D ∩B(z, δ) subsets of
full measure }

Key ingredient implies both interior and boundary continuity

Together with Key proposition implies u is monotone

Regularity of energy minimizer gives u is infinitesimally quasiconformal

Equivalence of analytic and geometric quasiconformality =⇒ Rajala’s
QC uniformization
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Koebe’s conjecture and progress

Recall the well-known Koebe conjecture predicts that every domain D ⊂ Ĉ
admits a conformal map onto a circle domain, i.e. a domain whose set of
complementary components consists of closed disks and points.

A major breakthrough was achieved by He and Schramm.

Theorem (He-Schramm, Ann. Math. 1993)

Keobe’s conjecture holds for countably connected domains.

He-Schramm (Invent. Math. 1994) also made progress on certain
uncountably connected domains

In a recent breakthrough, Rajala [arXiv 2021] extends (and reproves)
the He-Schramm theorem by exhaustion technique (approximation
from inside)
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Part IV: Two related topics
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The Schoen-Li-Wang Conjecture

The Schoen-Li-Wang Conjecture

Every quasiconformal self-homeomorphism of the boundary at infinity of a
rank one symmetric space M extends to a unique harmonic map from M
to itself.

This conjecture has recently been solved in the affirmative in a series of
break-through papers by

Markovic (Invent. Math. 2015, J. Amer. Math. Soc. 2017)

Lemma-Markovic (J. Diff. Geom. 2018)

Benoist-Hulin (Ann of Math. 2017)
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Benoist-Hulin’s theorem: beyond the SLC conjecture

Theorme (Benoist-Hulin, Ann. Math. 2017)

Every quasi-isometric map between rank one symmetric spaces X and Y is
at finite distance of a unique harmonic map.

The Benoist-Hulin theorem =⇒ Schoen-Li-Wang Conjecture

Benoist-Hulin (J. Euro. Math. Soc. 2020) further extended this
result to the case when X and Y are Hadamard manifolds of pinched
negative curvature, i.e. simply connected Riemannian manifolds of
sectional curvature bounded by −b2 ≤ KX ,KY ≤ −a2 < 0
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Sidler-Wenger’s extension

Theorem (Sidler-Wenger, J. Diff. Geom. 2021)

Let X be a Hadamard manifolds of pinched negative curvature and let
(Y, dY ) be a proper Gromov hyperbolic CAT (0)-space. Then for every
quasi-isometric map f : X → Y , there exists an energy minimizing
harmonic map u : X → Y which is globally Lipschitz continuous and

sup
x∈X

dY
(
u(x), f(x)

)
<∞.

Guo and Zhang proved that

The properness assumption in Sidler-Wenger’s result can be removed

Key ingredient: show the compactness of minimizing harmonic maps
between certain Alexandrov spaces and uses a Rellich compactness
theorem for locally noncompact spaces.
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Toro’s theorem

Theorem (Toro, J. Diff. Geom. 1994)

Let Ω ⊂ R2 be a bounded Lipschitz domain and u ∈W 2,2(Ω,R). Denote
by Γu = {(x, u(x)) : x ∈ Ω} the graph of u. Then Γu is homeomorphic to
a subdomain Ω′ of R2 through a bi-Lipshitz homeomorphism. More
precisely, there exists a homeomorphism Φ: Ω′ → Γu and L > 0 such that{

|Φ(z)− Φ(z′)| ≤ L|z − z′| for all z, z′ ∈ Ω′,

|Φ(Z)− Φ(Z ′)| ≤ L|Z − Z ′| for all Z,Z ′ ∈ Γu,

and furthermore,
L ≤ C

(
1 + ‖u‖W 2,2(Ω)

)
.
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Nontriviability of Toro’s theorem

Example 3 (A simple but typical example)

Let D ⊂ R2 be a disk of radius 1/2 and define u : D → R by

u(x, y) = x log | log r|, r =
√
x2 + y2.

Direct computation gives |D2u| . r−1| log r|−1 and so D2u ∈ L2(D). On
the other hand,

ux = log | log r|+O(| log r|−1) and uy = O(| log r|−1)

as r → 0. This suggests that Du is unbounded around the origin.

The unit normal of Γu, the graph of u, is

ν =
(−Du, 1)√
1 + |Du|2

→ −e1 = (−1, 0, 0)

as r → 0 and hence Γu is a C1 surface in R3.
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Theorem (Toro, Duke Math. J. 95)

There exists ε > 0, such that every surface S in Rn with the following
conditions, is Lipschitz:

There exist a sequence of smooth surfaces Sk in Rn, which converges
in measure in Rn to S

∀x ∈ Rn, there exist a ball B(x, ρ) and β > 0 such that

H2(Sk ∩B(x, ρ)) ≤ β

and ∫
Sk∩B(x,ρ)

|Ak|2dH2 ≤ ε2,

where Ak is the second fundamental form of Sk embedded in Rn.

Remark: This is connected to the Willmore surface problem.
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An approach due to Muller-Sverak

Theorem (Muller-Sverak, J. Diff. Geom. 95)

Conformal parametrizations of surfaces with square-integrable second
fundamental form are locally bi-Lipschitz homeomorphisms.

This approach relies on the compensation by compactness phenomena

One useful observation is the Coulomb orthonormal moving frames on
a surface is closed related to the conformal coordinates on this surface

Surfaces with mean curvature in L2 are of general interest in
geometric measure theory. There is a well-known Lamm-Sharp
Conjecture (Comm. PDEs. 2016) claiming weakly conformal solution
of −∆u = Ω · ∇u will be locally in W 2,2 ∩W 1,∞.
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If you fall in love with harmonic functions, your mathematician’s soul will
never come to rest unless you comprehend the origin of their irresistible
appeal and beauty. And if you are bent on spaces, manifolds and maps

you start researching for the geometric habitat of harmonicity.

Mikhail Gromov
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