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Finite type conditions arise naturally during the study of weakly pseudocon-
vex hypersurfaces in Cn.

For strongly pseudoconvex hypersurfaces (and their associated domains),
there are many wonderful theorems. For example,

1 Cartan-Chern-Moser Theorem

2 Kohn’s Sub-Elliptic Estimates
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Cartan-Chern-Moser Theorem

Poincaré: The real hypersurfaces in C2 are generically not locally holomor-
phic equivalent.

In contrast, any hypersurface in Rn locally diffeomorphic to
(
(Rn−1, 0), 0

)
.

Cartan: The strongly pseudoconvex real analytic hypersurface near the
origin in C2 possesses the following normal form:

v = |z|2 +
∑

k,l≥2,k+l≥6

akl(u)zkzl.

Here (z, w = u + iv) are the coordinates of C2.

Chern-Moser: Normal form for real hypersurfaces in Cn.
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Poincaré: The real hypersurfaces in C2 are generically not locally holomor-
phic equivalent.

In contrast, any hypersurface in Rn locally diffeomorphic to
(
(Rn−1, 0), 0

)
.

Cartan: The strongly pseudoconvex real analytic hypersurface near the
origin in C2 possesses the following normal form:

v = |z|2 +
∑

k,l≥2,k+l≥6

akl(u)zkzl.

Here (z, w = u + iv) are the coordinates of C2.

Chern-Moser: Normal form for real hypersurfaces in Cn.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 4 / 31



This theorem gave a local classification of the real hypersurfaces up to the
group SU(n, 1).

The pseudoconvex domain in Cn lack of the global invariants. The boundary
invariants reflects the analytic and geometric properties of the associated
domain.

Fefferman-Bochner: Two bounded smooth strongly pseudoconvex do-
mains in Cn are biholomorphically equivalent if and only if their associated
boundary are CR equivalence.

A natural question: What’s the local holomorphic invariants for general
pseudoconvex hypersurfaces?
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Kohn’s sub-elliptic estimates for strongly pseudoconvex
domains(1963):

Let D be a strongly pseudoconvex domain. Then we have the subelliptic
estimates:

For f ∈ Dom(∂) ∩Dom(∂∗). Then

‖f‖2
ε ≤ ‖∂f‖2 + ‖∂∗f‖2 + ‖f‖2 with ε =

1
2
.

This theorem is crucial on the investigation of the strongly pseudoconvex
domains.

A natural question: Do the sub-elliptic estimates hold for general pseudo-
convex domains?
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Kohn showed that the sub-elliptic estimates does not always hold for general
pseudoconvex domains.
If D is a domain defined by{

r < 0, r(z1, z2, w) = Re(w) + |z2
1 + z3

2 |2 + exp−(|z1|2+|z2|2+|w|2)−1
.
}

Then there is no subelliptic estimate for (0, 1) forms near 0.

A natural question: What kind of pseudoconvex domains possess sub-
elliptic estimates ?
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J. Kohn (1972):

Suppose M ⊂ C2, p ∈ M .
L: a (1, 0) tangential vector field near p with L(p) 6= 0.

η: the purely imaginary non-vanishing 1 form, that annihilates the holomor-
phic vector bundle.

T : the totally imaginary tangent vector field such that η(T ) = 1.

We have the following invariants:
(1) Contact order by regular holomorphic curves a(1)(M,p),

a(1)(M,p) = sup
γ

{
r| ∃ a local regular holomorphic curve γ

whose order of vanishing of ρ|γ at p is r
}
.

Here and in what follows, ρ is the defining function of M near p.
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(2) Iterated Lie brackets t(1)(M,p),

Define t(L, p) = m if for any k ≤ m−1 and L1, · · · , Lk = L or L, we have

〈η, [· · · [[L1, L2], L3] · · · , Lk]〉(p) = 0.

But for a certain L1, · · · , Lm = L or L, we have

〈η, [· · · [[L1, L2], L3] · · · , Lm]〉(p) 6= 0.

Then t(L, p) is independent of L and define t(1)(M,p) = t(L, p).
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(3) The degeneracy of the Levi form c(1)(M,p)

Define c(L, p) = m if for any k (≤ m− 3) vector fields L1, · · · , Lk = L or
L, it holds that

L1 · · ·Lk〈η, [L,L]〉(p) = 0

and for a certain choice of m − 2 vector fields L1, · · · , Lm−2 = L or L, it
holds that

L1 · · ·Lm−2〈η, [L,L]〉(p) 6= 0.

Then c(L, p) is independent of L and define c(1)(M,p) = c(L, p).
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(4) Contact order by holomorphic curves ∆1(M,p).

∆1(M, 0) = sup
z:(C,0)→(Cn,z0)

µ(z∗r)
µ(z)

.

Here z is a local holomorphic curve near 0.

When z is required to be regular, this is exactly the regular finite type
a(1)(M,p).
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J. Kohn (1972):

Theorem: a(1)(M,p) = t(1)(M,p) = c(1)(M,p) = ∆1(M,p).

pseudoconvexity is not necessary in the theorem.

When M is pseudoconvex, these invariants = m if and only if
(1) subelliptic estimates holds for ε = 1

m , but
(2) (Greiner 1974) for no large value of ε.

This finite type at 0 ∈ M is of finite type m if and only if the defining
function can take the following form

ρ = Im(w) + P (z, z) + O(|z|m+1 + |zRe(w)|+ |Re(w)|2).
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Generalization of Kohn’s notion of the boundary finite type condition to
higher dimensions has been a subject under extensive investigations in the
past 40 years in Several Complex Variables.

Different measurements of the degeneracy of the Levi form results in the
different finite types.

regular finite type (of Bloom-Graham)

D’Angelo finite type

Catlin multitype

Catlin finite type
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T. Bloom (1981):

When M ⊂ Cn. For each integer 1 ≤ s ≤ n − 1, we can similarly define
corresponding integer invariants:

1 The s-contact type a(s)(M,p)

2 The s-vector field type t(s)(M,p),

3 The s-type of the Levi form c(s)(M,p).
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The first invariant is more of algebraic, comparatively more easily to
compute

The second is defined in a way more of differential geometry

The third invariant is defined by the degeneracy of the Levi form, it is
always more easily to be applied.
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Bloom-Graham (1977): a(n−1)(M,p) = t(n−1)(M,p).

Bloom (1978): a(n−1)(M,p) = c(n−1)(M,p).

Bloom (1981): For any 1 ≤ s ≤ n − 1, a(s)(M,p) ≤ t(s)(M,p),
a(s)(M,p) ≤ c(s)(M,p).

For these results, pseudo-convexity is not necessary.
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T. Bloom 1981

Conjecture: When M is pseudo-convex, for 1 ≤ s ≤ n−1, a(s)(M,p) =
t(s)(M,p) = c(s)(M,p).

pseudo-convexity is necessary in this conjecture:

Let ρ = 2Re(w) + (z2 + z2 + |z1|2)2 and let M = {(z1, z2, w) ∈
C3| ρ = 0}. Let p = (0, 0, 0). Then a(1)(M,p) = 4 but c(1)(M,p) =
t(1)(M,p) = ∞ .

When M ⊂ C3, a(1)(M,p) = c(1)(M,p).
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Huang-Y. (2021): When M is pseudo-convex,

a(n−2)(M,p) = t(n−2)(M,p) = c(n−2)(M,p).

In particular, this gives a complete solution for n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form
at p has only one degenerate eigenvalue. Then a(1)(M,p) = t(1)(M,p) =
c(1)(M,p).
(In this case, a(1)(M,p) = c(1)(M,p) is due to Abdallah TALHAOUI (1983))
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A Conjecture of D’Angelo (1986)

For a fixed tangent (1, 0) vector field L, as in C2, we can similarly define
t(L, p) and c(L, p).

For higher dimensional case, t(L, p) and c(L, p) depends on L.

D’Angelo Conjecture:

Let M be a pseudoconvex smooth hypersurface, p ∈ M . Then for any fixed
(1, 0) tangent vector field L, we have t(L, p) = c(L, p).

It implies one equality of the Bloom Conjecture.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 19 / 31



A Conjecture of D’Angelo (1986)

For a fixed tangent (1, 0) vector field L, as in C2, we can similarly define
t(L, p) and c(L, p).

For higher dimensional case, t(L, p) and c(L, p) depends on L.

D’Angelo Conjecture:

Let M be a pseudoconvex smooth hypersurface, p ∈ M . Then for any fixed
(1, 0) tangent vector field L, we have t(L, p) = c(L, p).

It implies one equality of the Bloom Conjecture.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 19 / 31



A Conjecture of D’Angelo (1986)

For a fixed tangent (1, 0) vector field L, as in C2, we can similarly define
t(L, p) and c(L, p).

For higher dimensional case, t(L, p) and c(L, p) depends on L.

D’Angelo Conjecture:

Let M be a pseudoconvex smooth hypersurface, p ∈ M . Then for any fixed
(1, 0) tangent vector field L, we have t(L, p) = c(L, p).

It implies one equality of the Bloom Conjecture.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 19 / 31



A Conjecture of D’Angelo (1986)

For a fixed tangent (1, 0) vector field L, as in C2, we can similarly define
t(L, p) and c(L, p).

For higher dimensional case, t(L, p) and c(L, p) depends on L.

D’Angelo Conjecture:

Let M be a pseudoconvex smooth hypersurface, p ∈ M . Then for any fixed
(1, 0) tangent vector field L, we have t(L, p) = c(L, p).

It implies one equality of the Bloom Conjecture.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 19 / 31



Progress on the D’Angelo Conjecture

D’Angelo 1986: t(L, p) = 4 if and only if c(L, p) = 4.

Chen-Y.-Yuan 2020: t(L, p) = c(L, p) if n = 3.

Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form
at p has only one degenerate eigenvalue. Then, for any fixed (1, 0) tangent
vector field L, we have t(L, p) = c(L, p).

Fassina (2018) tried to prove t(L, 0) ≥ c(L, 0).

Recently, we have made some new progress on this problem.
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Kohn’s case (n=2)

WLOG, we assume p = 0. In C2 case, for any two (1, 0) tangent vectors L
and L′ with L(0), L′(0) 6= 0, we have L = fL′ with f(0) 6= 0. Hence

t(L, 0) = t(1)(M, 0), c(L, 0) = c(1)(M, 0).

The first approach is to achieve the equality via a(1)(M, 0). Namely, we
prove

t(L, 0) = a(1)(M, 0), c(L, 0) = a(1)(M, 0).
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Kohn’s case (n=2)

In nornal form, We may assume

ρ = Im(w) + P (z, z) + O(|z|m+1 + |zRe(w)|+ |Re(w)|2).

Then t(L, 0) and c(L, 0) can be obtained by direct computation. In fact, if

L =
∂

∂z
− ρz(ρw)−1 ∂

∂w
.

Then we have the following explicit formulas:

λ(L,L) =
1

|ρw|2
{
ρzz|ρw|2 − 2Re(ρzwρwρz) + rww|ρz|2

}
.

[∂ρ, [· · · [[L,L], L1], · · · , Lm−2](0) =
∂r+s

∂zr∂zs
ρ(0).

Here L1, · · · , Lm−2 = L or L, r and s are the numbers of L and L.
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Higher dimensional case

For Bloom-Graham’s case, the proofs of a(n−1)(M, 0) = t(n−1)(M, 0) and
a(n−1)(M, 0) = c(n−1)(M, 0) are more or less the same. We still have the
normal form and explicit computation.

In the above cases, the pseudoconvex is not needed.

When we deal with the Bloom Conjecture and the D’Angelo Conjecture in
higher dimensional case, the pseudoconvex is necessary.

The difficulty of these problems lies in how to make use this pseudoconvex
condition.
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As for the C3 case, to prove the D’Angelo Conjecture, we made use of the
Bloom Conjecture.

Let L be a general tangent vector field, which does not achieve the maximum
for the commutator type or the Levi form type.

We constructed a new hypersurface M ′, and use the Bloom Conjecture to
get a(1)(M ′, 0) = t(L, 0) and a(1)(M ′, 0) = c(L, 0).

For higher dimensional case (n ≥ 4), the Bloom Conjecture itself is still
unknown.
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For higher dimensional case (n ≥ 4), the Bloom Conjecture itself is still
unknown.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 24 / 31



As for the C3 case, to prove the D’Angelo Conjecture, we made use of the
Bloom Conjecture.

Let L be a general tangent vector field, which does not achieve the maximum
for the commutator type or the Levi form type.

We constructed a new hypersurface M ′, and use the Bloom Conjecture to
get a(1)(M ′, 0) = t(L, 0) and a(1)(M ′, 0) = c(L, 0).

For higher dimensional case (n ≥ 4), the Bloom Conjecture itself is still
unknown.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 24 / 31



As for the C3 case, to prove the D’Angelo Conjecture, we made use of the
Bloom Conjecture.

Let L be a general tangent vector field, which does not achieve the maximum
for the commutator type or the Levi form type.

We constructed a new hypersurface M ′, and use the Bloom Conjecture to
get a(1)(M ′, 0) = t(L, 0) and a(1)(M ′, 0) = c(L, 0).

For higher dimensional case (n ≥ 4), the Bloom Conjecture itself is still
unknown.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 24 / 31



The other approach to prove the D’Angelo Conjecture is to obtain a direct
relation between t(L, 0) and c(L, 0).

For L1, · · · , Lk+1 = L or L and any tangent vector field L′, define

αL′ = η([T,L′]),

and
Γk+2 = [· · · [[L,L], L1] · · · , Lk].
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If Lk = L, then

η(Γk+2) = η([Γk+1, L]) = (αL − L)η(Γk+1)− λ(L, π0,1Γk+1).

If Lk = L, then

η(Γk+2) = η([Γk+1, L]) = (αL − L)η(Γk+1)− λ(π1,0Γk+1, L).

The crucial fact in C2 is that there always exists a function f such that

π1,0Γk+1 = fL, π0,1Γk+1 = gL. (∗)

Thus by induction,

η(Γk+2) =
k∏

j=1

(αLj − Lj)λ(L,L) + Pk−1λ(L,L).

Pj is a differential operator of order at most j along L and L.
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(∗) is crucial for the C2 case.

It does not hold for higher dimensional case, which made the problem ex-
tremely difficult. For example,

1 Are t(L, 0) and c(L, 0) always even?

2 Is vL(f) ≥ vL(g) if 0 ≤ f ≤ g?

Here VL(f) is the vanishing order of f along L and L.

The second question is trivial if L is a real tangent vector field.
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Direct connection for higher dimensional case

Write
Lm+2 = [· · · [[L,L], L1] · · · , Lm] Lj = L or L.

Then if Lm = L

η(Lm+2) = (αL − L)η(Lm+1)− λ(L,Π0,1Lm+1)

If if Lm = L

η(Lm+2) = (αL − L)η(Lm+1) + λ(Π1,0Lm+1, L).

Hence by induction, we obtain

η(Lm+2) = (−1)mLm · · ·L1λ(L,L) +R.

R is extremely complicated, it is no longer lower times derivative of λ(L,L)
along L and L.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 28 / 31



Direct connection for higher dimensional case

Write
Lm+2 = [· · · [[L,L], L1] · · · , Lm] Lj = L or L.

Then if Lm = L

η(Lm+2) = (αL − L)η(Lm+1)− λ(L,Π0,1Lm+1)

If if Lm = L

η(Lm+2) = (αL − L)η(Lm+1) + λ(Π1,0Lm+1, L).

Hence by induction, we obtain

η(Lm+2) = (−1)mLm · · ·L1λ(L,L) +R.

R is extremely complicated, it is no longer lower times derivative of λ(L,L)
along L and L.

Wanke Yin ( School of Mathematics and Statistics, Wuhan University )Finite type conditions Aug. 19th§Shanghai 28 / 31



Write X = Π1,0[L,L]. In the case of t = 4 or c = 4,

η([[[L,L], L], L]) + η([[[L,L], L], L]) = (LL + LL)λ(L,L) + 2λ(X, X).

The key point is that both (LL + LL)λ(L,L) and the remainder term
λ(X, X) are positive, due to the pseudoconvexity.

It is not easy to achieve such a positive remainder term even for the degree
6 case.
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Relation between these invariants

Example: Let M ⊂ C4 be a real hypersurface defined by

r = −2Imw + |z1|4 + |z1|2|z2|2 + |z1|2|z3|2 + |z2
2 − z3

3 |4.

The Caltin multitypes at 0 are 4, 4, 4,

The Bloom regular contact types are 4, 8, 12,

The D’Angelo finite types are 4, 8, +∞.
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Thank you for your attention!
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