Finite type conditions for real smooth hypersurfaces

Wanke Yin
School of Mathematics and Statistics, Wuhan University

Aug. 19th, Shanghai

Finite type conditions for real smooth hypersurfaces

Wanke Yin

School of Mathematics and Statistics, Wuhan University
Aug. 19th, Shanghai

Finite type conditions arise naturally during the study of weakly pseudoconvex hypersurfaces in \mathbb{C}^{n}.

Finite type conditions arise naturally during the study of weakly pseudoconvex hypersurfaces in \mathbb{C}^{n}.

For strongly pseudoconvex hypersurfaces (and their associated domains), there are many wonderful theorems. For example,

Finite type conditions arise naturally during the study of weakly pseudoconvex hypersurfaces in \mathbb{C}^{n}.

For strongly pseudoconvex hypersurfaces (and their associated domains), there are many wonderful theorems. For example,
(1) Cartan-Chern-Moser Theorem

Finite type conditions arise naturally during the study of weakly pseudoconvex hypersurfaces in \mathbb{C}^{n}.

For strongly pseudoconvex hypersurfaces (and their associated domains), there are many wonderful theorems. For example,
(1) Cartan-Chern-Moser Theorem
(2) Kohn's Sub-Elliptic Estimates

Cartan-Chern-Moser Theorem

Poincaré: The real hypersurfaces in \mathbb{C}^{2} are generically not locally holomorphic equivalent.

Cartan-Chern-Moser Theorem

Poincaré: The real hypersurfaces in \mathbb{C}^{2} are generically not locally holomorphic equivalent.

In contrast, any hypersurface in \mathbb{R}^{n} locally diffeomorphic to $\left(\left(\mathbb{R}^{n-1}, 0\right), 0\right)$.

Cartan-Chern-Moser Theorem

Poincaré: The real hypersurfaces in \mathbb{C}^{2} are generically not locally holomorphic equivalent.
In contrast, any hypersurface in \mathbb{R}^{n} locally diffeomorphic to $\left(\left(\mathbb{R}^{n-1}, 0\right), 0\right)$.

Cartan: The strongly pseudoconvex real analytic hypersurface near the origin in \mathbb{C}^{2} possesses the following normal form:

$$
v=|z|^{2}+\sum_{k, l \geq 2, k+l \geq 6} a_{k \bar{l}}(u) z^{k} \bar{z}^{l} .
$$

Here $(z, w=u+i v)$ are the coordinates of \mathbb{C}^{2}.

Cartan-Chern-Moser Theorem

Poincaré: The real hypersurfaces in \mathbb{C}^{2} are generically not locally holomorphic equivalent.

In contrast, any hypersurface in \mathbb{R}^{n} locally diffeomorphic to $\left(\left(\mathbb{R}^{n-1}, 0\right), 0\right)$.

Cartan: The strongly pseudoconvex real analytic hypersurface near the origin in \mathbb{C}^{2} possesses the following normal form:

$$
v=|z|^{2}+\sum_{k, l \geq 2, k+l \geq 6} a_{k \bar{l}}(u) z^{k} \bar{z}^{l} .
$$

Here $(z, w=u+i v)$ are the coordinates of \mathbb{C}^{2}.
Chern-Moser: Normal form for real hypersurfaces in \mathbb{C}^{n}.

This theorem gave a local classification of the real hypersurfaces up to the group $S U(n, 1)$.

This theorem gave a local classification of the real hypersurfaces up to the group $S U(n, 1)$.

The pseudoconvex domain in \mathbb{C}^{n} lack of the global invariants. The boundary invariants reflects the analytic and geometric properties of the associated domain.

This theorem gave a local classification of the real hypersurfaces up to the group $S U(n, 1)$.

The pseudoconvex domain in \mathbb{C}^{n} lack of the global invariants. The boundary invariants reflects the analytic and geometric properties of the associated domain.

Fefferman-Bochner: Two bounded smooth strongly pseudoconvex domains in \mathbb{C}^{n} are biholomorphically equivalent if and only if their associated boundary are $C R$ equivalence.

This theorem gave a local classification of the real hypersurfaces up to the group $S U(n, 1)$.

The pseudoconvex domain in \mathbb{C}^{n} lack of the global invariants. The boundary invariants reflects the analytic and geometric properties of the associated domain.

Fefferman-Bochner: Two bounded smooth strongly pseudoconvex domains in \mathbb{C}^{n} are biholomorphically equivalent if and only if their associated boundary are $C R$ equivalence.

A natural question: What's the local holomorphic invariants for general pseudoconvex hypersurfaces?

Kohn's sub-elliptic estimates for strongly pseudoconvex domains(1963):

Let D be a strongly pseudoconvex domain. Then we have the subelliptic estimates:

Kohn's sub-elliptic estimates for strongly pseudoconvex domains(1963):

Let D be a strongly pseudoconvex domain. Then we have the subelliptic estimates:
For $f \in \operatorname{Dom}(\bar{\partial}) \cap \operatorname{Dom}\left(\bar{\partial}^{*}\right)$. Then

$$
\|f\|_{\epsilon}^{2} \leq\|\partial f\|^{2}+\left\|\bar{\partial}^{*} f\right\|^{2}+\|f\|^{2} \text { with } \epsilon=\frac{1}{2}
$$

Kohn's sub-elliptic estimates for strongly pseudoconvex domains(1963):

Let D be a strongly pseudoconvex domain. Then we have the subelliptic estimates:
For $f \in \operatorname{Dom}(\bar{\partial}) \cap \operatorname{Dom}\left(\bar{\partial}^{*}\right)$. Then

$$
\|f\|_{\epsilon}^{2} \leq\|\partial f\|^{2}+\left\|\bar{\partial}^{*} f\right\|^{2}+\|f\|^{2} \text { with } \epsilon=\frac{1}{2}
$$

This theorem is crucial on the investigation of the strongly pseudoconvex domains.

Kohn's sub-elliptic estimates for strongly pseudoconvex domains(1963):

Let D be a strongly pseudoconvex domain. Then we have the subelliptic estimates:
For $f \in \operatorname{Dom}(\bar{\partial}) \cap \operatorname{Dom}\left(\bar{\partial}^{*}\right)$. Then

$$
\|f\|_{\epsilon}^{2} \leq\|\partial f\|^{2}+\left\|\bar{\partial}^{*} f\right\|^{2}+\|f\|^{2} \text { with } \epsilon=\frac{1}{2}
$$

This theorem is crucial on the investigation of the strongly pseudoconvex domains.

A natural question: Do the sub-elliptic estimates hold for general pseudoconvex domains?

Kohn showed that the sub-elliptic estimates does not always hold for general pseudoconvex domains.
If D is a domain defined by

$$
\left\{r<0, r\left(z_{1}, z_{2}, w\right)=R e(w)+\left|z_{1}^{2}+z_{2}^{3}\right|^{2}+\exp ^{-\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+|w|^{2}\right)^{-1}} \cdot\right\}
$$

Then there is no subelliptic estimate for $(0,1)$ forms near 0 .

Kohn showed that the sub-elliptic estimates does not always hold for general pseudoconvex domains.
If D is a domain defined by

$$
\left\{r<0, r\left(z_{1}, z_{2}, w\right)=\operatorname{Re}(w)+\left|z_{1}^{2}+z_{2}^{3}\right|^{2}+\exp ^{-\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+|w|^{2}\right)^{-1}} \cdot\right\}
$$

Then there is no subelliptic estimate for $(0,1)$ forms near 0 .
A natural question: What kind of pseudoconvex domains possess subelliptic estimates ?

J. Kohn (1972):

Suppose $M \subset \mathbb{C}^{2}, p \in M$.
L : a $(1,0)$ tangential vector field near p with $L(p) \neq 0$.

J. Kohn (1972):

Suppose $M \subset \mathbb{C}^{2}, p \in M$.
L : a $(1,0)$ tangential vector field near p with $L(p) \neq 0$.
η : the purely imaginary non-vanishing 1 form, that annihilates the holomorphic vector bundle.

J. Kohn (1972):

Suppose $M \subset \mathbb{C}^{2}, p \in M$.
L : a $(1,0)$ tangential vector field near p with $L(p) \neq 0$.
η : the purely imaginary non-vanishing 1 form, that annihilates the holomorphic vector bundle.
T : the totally imaginary tangent vector field such that $\eta(T)=1$.

J. Kohn (1972):

Suppose $M \subset \mathbb{C}^{2}, p \in M$.
L : a $(1,0)$ tangential vector field near p with $L(p) \neq 0$.
η : the purely imaginary non-vanishing 1 form, that annihilates the holomorphic vector bundle.
T : the totally imaginary tangent vector field such that $\eta(T)=1$.
We have the following invariants:

J. Kohn (1972):

Suppose $M \subset \mathbb{C}^{2}, p \in M$.
L : a $(1,0)$ tangential vector field near p with $L(p) \neq 0$.
η : the purely imaginary non-vanishing 1 form, that annihilates the holomorphic vector bundle.
T : the totally imaginary tangent vector field such that $\eta(T)=1$.
We have the following invariants:
(1) Contact order by regular holomorphic curves $a^{(1)}(M, p)$,

J. Kohn (1972):

Suppose $M \subset \mathbb{C}^{2}, p \in M$.
L : a $(1,0)$ tangential vector field near p with $L(p) \neq 0$.
η : the purely imaginary non-vanishing 1 form, that annihilates the holomorphic vector bundle.
T : the totally imaginary tangent vector field such that $\eta(T)=1$.
We have the following invariants:
(1) Contact order by regular holomorphic curves $a^{(1)}(M, p)$,

$$
a^{(1)}(M, p)=\sup _{\gamma}\{r \mid \exists \text { a local regular holomorphic curve } \gamma
$$ whose order of vanishing of $\left.\rho\right|_{\gamma}$ at p is $\left.r\right\}$.

J. Kohn (1972):

Suppose $M \subset \mathbb{C}^{2}, p \in M$.
L : a $(1,0)$ tangential vector field near p with $L(p) \neq 0$.
η : the purely imaginary non-vanishing 1 form, that annihilates the holomorphic vector bundle.
T : the totally imaginary tangent vector field such that $\eta(T)=1$.
We have the following invariants:
(1) Contact order by regular holomorphic curves $a^{(1)}(M, p)$,
$a^{(1)}(M, p)=\sup _{\gamma}\{r \mid \exists$ a local regular holomorphic curve γ whose order of vanishing of $\left.\rho\right|_{\gamma}$ at p is $\left.r\right\}$.

Here and in what follows, ρ is the defining function of M near p.
(2) Iterated Lie brackets $t^{(1)}(M, p)$,
(2) Iterated Lie brackets $t^{(1)}(M, p)$,

Define $t(L, p)=m$ if for any $k \leq m-1$ and $L_{1}, \cdots, L_{k}=L$ or \bar{L}, we have
(2) Iterated Lie brackets $t^{(1)}(M, p)$,

Define $t(L, p)=m$ if for any $k \leq m-1$ and $L_{1}, \cdots, L_{k}=L$ or \bar{L}, we have

$$
\left\langle\eta,\left[\cdots\left[\left[L_{1}, L_{2}\right], L_{3}\right] \cdots, L_{k}\right]\right\rangle(p)=0 .
$$

(2) Iterated Lie brackets $t^{(1)}(M, p)$,

Define $t(L, p)=m$ if for any $k \leq m-1$ and $L_{1}, \cdots, L_{k}=L$ or \bar{L}, we have

$$
\left\langle\eta,\left[\cdots\left[\left[L_{1}, L_{2}\right], L_{3}\right] \cdots, L_{k}\right]\right\rangle(p)=0
$$

But for a certain $L_{1}, \cdots, L_{m}=L$ or \bar{L}, we have
(2) Iterated Lie brackets $t^{(1)}(M, p)$,

Define $t(L, p)=m$ if for any $k \leq m-1$ and $L_{1}, \cdots, L_{k}=L$ or \bar{L}, we have

$$
\left\langle\eta,\left[\cdots\left[\left[L_{1}, L_{2}\right], L_{3}\right] \cdots, L_{k}\right]\right\rangle(p)=0
$$

But for a certain $L_{1}, \cdots, L_{m}=L$ or \bar{L}, we have

$$
\left\langle\eta,\left[\cdots\left[\left[L_{1}, L_{2}\right], L_{3}\right] \cdots, L_{m}\right]\right\rangle(p) \neq 0
$$

(2) Iterated Lie brackets $t^{(1)}(M, p)$,

Define $t(L, p)=m$ if for any $k \leq m-1$ and $L_{1}, \cdots, L_{k}=L$ or \bar{L}, we have

$$
\left\langle\eta,\left[\cdots\left[\left[L_{1}, L_{2}\right], L_{3}\right] \cdots, L_{k}\right]\right\rangle(p)=0 .
$$

But for a certain $L_{1}, \cdots, L_{m}=L$ or \bar{L}, we have

$$
\left\langle\eta,\left[\cdots\left[\left[L_{1}, L_{2}\right], L_{3}\right] \cdots, L_{m}\right]\right\rangle(p) \neq 0 .
$$

Then $t(L, p)$ is independent of L and define $t^{(1)}(M, p)=t(L, p)$.
(3) The degeneracy of the Levi form $c^{(1)}(M, p)$
(3) The degeneracy of the Levi form $c^{(1)}(M, p)$

Define $c(L, p)=m$ if for any $k(\leq m-3)$ vector fields $L_{1}, \cdots, L_{k}=L$ or \bar{L}, it holds that
(3) The degeneracy of the Levi form $c^{(1)}(M, p)$

Define $c(L, p)=m$ if for any $k(\leq m-3)$ vector fields $L_{1}, \cdots, L_{k}=L$ or \bar{L}, it holds that

$$
L_{1} \cdots L_{k}\langle\eta,[L, \bar{L}]\rangle(p)=0
$$

(3) The degeneracy of the Levi form $c^{(1)}(M, p)$

Define $c(L, p)=m$ if for any $k(\leq m-3)$ vector fields $L_{1}, \cdots, L_{k}=L$ or \bar{L}, it holds that

$$
L_{1} \cdots L_{k}\langle\eta,[L, \bar{L}]\rangle(p)=0
$$

(3) The degeneracy of the Levi form $c^{(1)}(M, p)$

Define $c(L, p)=m$ if for any $k(\leq m-3)$ vector fields $L_{1}, \cdots, L_{k}=L$ or \bar{L}, it holds that

$$
L_{1} \cdots L_{k}\langle\eta,[L, \bar{L}]\rangle(p)=0
$$

and for a certain choice of $m-2$ vector fields $L_{1}, \cdots, L_{m-2}=L$ or \bar{L}, it holds that
(3) The degeneracy of the Levi form $c^{(1)}(M, p)$

Define $c(L, p)=m$ if for any $k(\leq m-3)$ vector fields $L_{1}, \cdots, L_{k}=L$ or \bar{L}, it holds that

$$
L_{1} \cdots L_{k}\langle\eta,[L, \bar{L}]\rangle(p)=0
$$

and for a certain choice of $m-2$ vector fields $L_{1}, \cdots, L_{m-2}=L$ or \bar{L}, it holds that

$$
L_{1} \cdots L_{m-2}\langle\eta,[L, \bar{L}]\rangle(p) \neq 0
$$

(3) The degeneracy of the Levi form $c^{(1)}(M, p)$

Define $c(L, p)=m$ if for any $k(\leq m-3)$ vector fields $L_{1}, \cdots, L_{k}=L$ or \bar{L}, it holds that

$$
L_{1} \cdots L_{k}\langle\eta,[L, \bar{L}]\rangle(p)=0
$$

and for a certain choice of $m-2$ vector fields $L_{1}, \cdots, L_{m-2}=L$ or \bar{L}, it holds that

$$
L_{1} \cdots L_{m-2}\langle\eta,[L, \bar{L}]\rangle(p) \neq 0
$$

Then $c(L, p)$ is independent of L and define $c^{(1)}(M, p)=c(L, p)$.
(4) Contact order by holomorphic curves $\Delta_{1}(M, p)$.
(4) Contact order by holomorphic curves $\Delta_{1}(M, p)$.

$$
\Delta_{1}(M, 0)=\sup _{z:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)} \frac{\mu\left(z^{*} r\right)}{\mu(z)}
$$

(4) Contact order by holomorphic curves $\Delta_{1}(M, p)$.

$$
\Delta_{1}(M, 0)=\sup _{z:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)} \frac{\mu\left(z^{*} r\right)}{\mu(z)}
$$

Here z is a local holomorphic curve near 0 .
(4) Contact order by holomorphic curves $\Delta_{1}(M, p)$.

$$
\Delta_{1}(M, 0)=\sup _{z:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)} \frac{\mu\left(z^{*} r\right)}{\mu(z)}
$$

Here z is a local holomorphic curve near 0 .
When z is required to be regular, this is exactly the regular finite type $a^{(1)}(M, p)$.

J. Kohn (1972):

- Theorem: $a^{(1)}(M, p)=t^{(1)}(M, p)=c^{(1)}(M, p)=\Delta_{1}(M, p)$.

J. Kohn (1972):

- Theorem: $a^{(1)}(M, p)=t^{(1)}(M, p)=c^{(1)}(M, p)=\Delta_{1}(M, p)$.
- pseudoconvexity is not necessary in the theorem.

J. Kohn (1972):

- Theorem: $a^{(1)}(M, p)=t^{(1)}(M, p)=c^{(1)}(M, p)=\Delta_{1}(M, p)$.
- pseudoconvexity is not necessary in the theorem.
- When M is pseudoconvex, these invariants $=m$ if and only if (1) subelliptic estimates holds for $\epsilon=\frac{1}{m}$, but (2) (Greiner 1974) for no large value of ϵ.

J. Kohn (1972):

- Theorem: $a^{(1)}(M, p)=t^{(1)}(M, p)=c^{(1)}(M, p)=\Delta_{1}(M, p)$.
- pseudoconvexity is not necessary in the theorem.
- When M is pseudoconvex, these invariants $=m$ if and only if
(1) subelliptic estimates holds for $\epsilon=\frac{1}{m}$, but
(2) (Greiner 1974) for no large value of ϵ.

This finite type at $0 \in M$ is of finite type m if and only if the defining function can take the following form

$$
\rho=\operatorname{lm}(w)+P(z, \bar{z})+O\left(|z|^{m+1}+|z \operatorname{Re}(w)|+|\operatorname{Re}(w)|^{2}\right) .
$$

Here P is a non trivial homogeneous polynomial of degree m without harmonic terms.

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

Different measurements of the degeneracy of the Levi form results in the different finite types.

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

Different measurements of the degeneracy of the Levi form results in the different finite types.

- regular finite type (of Bloom-Graham)

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

Different measurements of the degeneracy of the Levi form results in the different finite types.

- regular finite type (of Bloom-Graham)
- D'Angelo finite type

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

Different measurements of the degeneracy of the Levi form results in the different finite types.

- regular finite type (of Bloom-Graham)
- D'Angelo finite type
- Catlin multitype

Generalization of Kohn's notion of the boundary finite type condition to higher dimensions has been a subject under extensive investigations in the past 40 years in Several Complex Variables.

Different measurements of the degeneracy of the Levi form results in the different finite types.

- regular finite type (of Bloom-Graham)
- D'Angelo finite type
- Catlin multitype
- Catlin finite type

T. Bloom (1981):

When $M \subset \mathbb{C}^{n}$. For each integer $1 \leq s \leq n-1$, we can similarly define corresponding integer invariants:

T. Bloom (1981):

When $M \subset \mathbb{C}^{n}$. For each integer $1 \leq s \leq n-1$, we can similarly define corresponding integer invariants:
(1) The s-contact type $a^{(s)}(M, p)$

T. Bloom (1981):

When $M \subset \mathbb{C}^{n}$. For each integer $1 \leq s \leq n-1$, we can similarly define corresponding integer invariants:
(1) The s-contact type $a^{(s)}(M, p)$
(2) The s-vector field type $t^{(s)}(M, p)$,

T. Bloom (1981):

When $M \subset \mathbb{C}^{n}$. For each integer $1 \leq s \leq n-1$, we can similarly define corresponding integer invariants:
(1) The s-contact type $a^{(s)}(M, p)$
(2) The s-vector field type $t^{(s)}(M, p)$,
(3) The s-type of the Levi form $c^{(s)}(M, p)$.

- The first invariant is more of algebraic, comparatively more easily to compute
- The first invariant is more of algebraic, comparatively more easily to compute
- The second is defined in a way more of differential geometry
- The first invariant is more of algebraic, comparatively more easily to compute
- The second is defined in a way more of differential geometry
- The third invariant is defined by the degeneracy of the Levi form, it is always more easily to be applied.
- Bloom-Graham (1977): $a^{(n-1)}(M, p)=t^{(n-1)}(M, p)$.
- Bloom (1978): $a^{(n-1)}(M, p)=c^{(n-1)}(M, p)$.
- Bloom-Graham (1977): $a^{(n-1)}(M, p)=t^{(n-1)}(M, p)$.
- Bloom (1978): $a^{(n-1)}(M, p)=c^{(n-1)}(M, p)$.
- Bloom (1981): For any $1 \leq s \leq n-1, a^{(s)}(M, p) \leq t^{(s)}(M, p)$, $a^{(s)}(M, p) \leq c^{(s)}(M, p)$.
- Bloom-Graham (1977): $a^{(n-1)}(M, p)=t^{(n-1)}(M, p)$.
- Bloom (1978): $a^{(n-1)}(M, p)=c^{(n-1)}(M, p)$.
- Bloom (1981): For any $1 \leq s \leq n-1, a^{(s)}(M, p) \leq t^{(s)}(M, p)$, $a^{(s)}(M, p) \leq c^{(s)}(M, p)$.
For these results, pseudo-convexity is not necessary.

T. Bloom 1981

- Conjecture: When M is pseudo-convex, for $1 \leq s \leq n-1, a^{(s)}(M, p)=$ $t^{(s)}(M, p)=c^{(s)}(M, p)$.

T. Bloom 1981

- Conjecture: When M is pseudo-convex, for $1 \leq s \leq n-1, a^{(s)}(M, p)=$ $t^{(s)}(M, p)=c^{(s)}(M, p)$.
- pseudo-convexity is necessary in this conjecture:

T. Bloom 1981

- Conjecture: When M is pseudo-convex, for $1 \leq s \leq n-1, a^{(s)}(M, p)=$ $t^{(s)}(M, p)=c^{(s)}(M, p)$.
- pseudo-convexity is necessary in this conjecture:

$$
\begin{aligned}
& \text { Let } \rho=2 \operatorname{Re}(w)+\left(z_{2}+\overline{z_{2}}+\left|z_{1}\right|^{2}\right)^{2} \text { and let } M=\left\{\left(z_{1}, z_{2}, w\right) \in\right. \\
& \left.\mathbb{C}^{3} \mid \rho=0\right\} \text {. Let } p=(0,0,0) \text {. Then } a^{(1)}(M, p)=4 \operatorname{but} c^{(1)}(M, p)= \\
& t^{(1)}(M, p)=\infty \text {. }
\end{aligned}
$$

T. Bloom 1981

- Conjecture: When M is pseudo-convex, for $1 \leq s \leq n-1, a^{(s)}(M, p)=$ $t^{(s)}(M, p)=c^{(s)}(M, p)$.
- pseudo-convexity is necessary in this conjecture:

$$
\begin{aligned}
& \text { Let } \rho=2 \operatorname{Re}(w)+\left(z_{2}+\overline{z_{2}}+\left|z_{1}\right|^{2}\right)^{2} \text { and let } M=\left\{\left(z_{1}, z_{2}, w\right) \in\right. \\
& \left.\mathbb{C}^{3} \mid \rho=0\right\} \text {. Let } p=(0,0,0) \text {. Then } a^{(1)}(M, p)=4 \operatorname{but} c^{(1)}(M, p)= \\
& t^{(1)}(M, p)=\infty \text {. }
\end{aligned}
$$

- When $M \subset \mathbb{C}^{3}, a^{(1)}(M, p)=c^{(1)}(M, p)$.

Huang-Y. (2021): When M is pseudo-convex,

$$
a^{(n-2)}(M, p)=t^{(n-2)}(M, p)=c^{(n-2)}(M, p)
$$

In particular, this gives a complete solution for $n=3$.

Huang-Y. (2021): When M is pseudo-convex,

$$
a^{(n-2)}(M, p)=t^{(n-2)}(M, p)=c^{(n-2)}(M, p)
$$

In particular, this gives a complete solution for $n=3$.
Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then $a^{(1)}(M, p)=t^{(1)}(M, p)=$ $c^{(1)}(M, p)$.

Huang-Y. (2021): When M is pseudo-convex,

$$
a^{(n-2)}(M, p)=t^{(n-2)}(M, p)=c^{(n-2)}(M, p)
$$

In particular, this gives a complete solution for $n=3$.
Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then $a^{(1)}(M, p)=t^{(1)}(M, p)=$ $c^{(1)}(M, p)$.
(In this case, $a^{(1)}(M, p)=c^{(1)}(M, p)$ is due to Abdallah TALHAOUI (1983))

A Conjecture of D’Angelo (1986)

For a fixed tangent $(1,0)$ vector field L, as in \mathbb{C}^{2}, we can similarly define $t(L, p)$ and $c(L, p)$.

A Conjecture of D’Angelo (1986)

For a fixed tangent $(1,0)$ vector field L, as in \mathbb{C}^{2}, we can similarly define $t(L, p)$ and $c(L, p)$.

For higher dimensional case, $t(L, p)$ and $c(L, p)$ depends on L.

A Conjecture of D'Angelo (1986)

For a fixed tangent $(1,0)$ vector field L, as in \mathbb{C}^{2}, we can similarly define $t(L, p)$ and $c(L, p)$.

For higher dimensional case, $t(L, p)$ and $c(L, p)$ depends on L.

D'Angelo Conjecture:

Let M be a pseudoconvex smooth hypersurface, $p \in M$. Then for any fixed $(1,0)$ tangent vector field L, we have $t(L, p)=c(L, p)$.

A Conjecture of D'Angelo (1986)

For a fixed tangent $(1,0)$ vector field L, as in \mathbb{C}^{2}, we can similarly define $t(L, p)$ and $c(L, p)$.

For higher dimensional case, $t(L, p)$ and $c(L, p)$ depends on L.

D'Angelo Conjecture:

Let M be a pseudoconvex smooth hypersurface, $p \in M$. Then for any fixed $(1,0)$ tangent vector field L, we have $t(L, p)=c(L, p)$.

It implies one equality of the Bloom Conjecture.

Progress on the D'Angelo Conjecture

D'Angelo 1986: $t(L, p)=4$ if and only if $c(L, p)=4$.

Progress on the D'Angelo Conjecture

D'Angelo 1986: $t(L, p)=4$ if and only if $c(L, p)=4$.
Chen-Y.-Yuan 2020: $t(L, p)=c(L, p)$ if $n=3$.

Progress on the D'Angelo Conjecture

D'Angelo 1986: $t(L, p)=4$ if and only if $c(L, p)=4$.
Chen-Y.-Yuan 2020: $t(L, p)=c(L, p)$ if $n=3$.
Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then, for any fixed $(1,0)$ tangent vector field L, we have $t(L, p)=c(L, p)$.

Progress on the D'Angelo Conjecture

D'Angelo 1986: $t(L, p)=4$ if and only if $c(L, p)=4$.
Chen-Y.-Yuan 2020: $t(L, p)=c(L, p)$ if $n=3$.
Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then, for any fixed $(1,0)$ tangent vector field L, we have $t(L, p)=c(L, p)$.

Fassina (2018) tried to prove $t(L, 0) \geq c(L, 0)$.

Progress on the D'Angelo Conjecture

D'Angelo 1986: $t(L, p)=4$ if and only if $c(L, p)=4$.
Chen-Y.-Yuan 2020: $t(L, p)=c(L, p)$ if $n=3$.
Chen-Chen-Y. (2021): Suppose that M is pseudo-convex, the Levi form at p has only one degenerate eigenvalue. Then, for any fixed $(1,0)$ tangent vector field L, we have $t(L, p)=c(L, p)$.

Fassina (2018) tried to prove $t(L, 0) \geq c(L, 0)$.
Recently, we have made some new progress on this problem.

Kohn's case $(\mathrm{n}=2)$

WLOG, we assume $p=0$. In \mathbb{C}^{2} case, for any two $(1,0)$ tangent vectors L and L^{\prime} with $L(0), L^{\prime}(0) \neq 0$, we have $L=f L^{\prime}$ with $f(0) \neq 0$. Hence

$$
t(L, 0)=t^{(1)}(M, 0), \quad c(L, 0)=c^{(1)}(M, 0) .
$$

Kohn's case $(\mathrm{n}=2)$

WLOG, we assume $p=0$. In \mathbb{C}^{2} case, for any two $(1,0)$ tangent vectors L and L^{\prime} with $L(0), L^{\prime}(0) \neq 0$, we have $L=f L^{\prime}$ with $f(0) \neq 0$. Hence

$$
t(L, 0)=t^{(1)}(M, 0), \quad c(L, 0)=c^{(1)}(M, 0) .
$$

The first approach is to achieve the equality via $a^{(1)}(M, 0)$. Namely, we prove

$$
t(L, 0)=a^{(1)}(M, 0), \quad c(L, 0)=a^{(1)}(M, 0) .
$$

Kohn's case $(\mathrm{n}=2)$

In nornal form, We may assume

$$
\rho=\operatorname{Im}(w)+P(z, \bar{z})+O\left(|z|^{m+1}+|z \operatorname{Re}(w)|+|\operatorname{Re}(w)|^{2}\right) .
$$

Then $t(L, 0)$ and $c(L, 0)$ can be obtained by direct computation. In fact, if

$$
L=\frac{\partial}{\partial z}-\rho_{z}\left(\rho_{w}\right)^{-1} \frac{\partial}{\partial w} .
$$

Kohn's case $(\mathrm{n}=2)$

In nornal form, We may assume

$$
\rho=\operatorname{Im}(w)+P(z, \bar{z})+O\left(|z|^{m+1}+|z \operatorname{Re}(w)|+|\operatorname{Re}(w)|^{2}\right) .
$$

Then $t(L, 0)$ and $c(L, 0)$ can be obtained by direct computation. In fact, if

$$
L=\frac{\partial}{\partial z}-\rho_{z}\left(\rho_{w}\right)^{-1} \frac{\partial}{\partial w} .
$$

Then we have the following explicit formulas:

$$
\begin{gathered}
\lambda(L, \bar{L})=\frac{1}{\left|\rho_{w}\right|^{2}}\left\{\rho_{z \bar{z}}\left|\rho_{w}\right|^{2}-2 \operatorname{Re}\left(\rho_{z \bar{w}} \rho_{w} \rho_{\bar{z}}\right)+r_{w \bar{w}}\left|\rho_{z}\right|^{2}\right\} . \\
{\left[\partial \rho,\left[\cdots\left[[L, \bar{L}], L_{1}\right], \cdots, L_{m-2}\right](0)=\frac{\partial^{r+s}}{\partial z^{r} \partial z^{s}} \rho(0) .\right.}
\end{gathered}
$$

Here $L_{1}, \cdots, L_{m-2}=L$ or \bar{L}, r and s are the numbers of L and \bar{L}.

Higher dimensional case

For Bloom-Graham's case, the proofs of $a^{(n-1)}(M, 0)=t^{(n-1)}(M, 0)$ and $a^{(n-1)}(M, 0)=c^{(n-1)}(M, 0)$ are more or less the same. We still have the normal form and explicit computation.

Higher dimensional case

For Bloom-Graham's case, the proofs of $a^{(n-1)}(M, 0)=t^{(n-1)}(M, 0)$ and $a^{(n-1)}(M, 0)=c^{(n-1)}(M, 0)$ are more or less the same. We still have the normal form and explicit computation.

In the above cases, the pseudoconvex is not needed.

Higher dimensional case

For Bloom-Graham's case, the proofs of $a^{(n-1)}(M, 0)=t^{(n-1)}(M, 0)$ and $a^{(n-1)}(M, 0)=c^{(n-1)}(M, 0)$ are more or less the same. We still have the normal form and explicit computation.

In the above cases, the pseudoconvex is not needed.
When we deal with the Bloom Conjecture and the D'Angelo Conjecture in higher dimensional case, the pseudoconvex is necessary.

Higher dimensional case

For Bloom-Graham's case, the proofs of $a^{(n-1)}(M, 0)=t^{(n-1)}(M, 0)$ and $a^{(n-1)}(M, 0)=c^{(n-1)}(M, 0)$ are more or less the same. We still have the normal form and explicit computation.

In the above cases, the pseudoconvex is not needed.
When we deal with the Bloom Conjecture and the D'Angelo Conjecture in higher dimensional case, the pseudoconvex is necessary.

The difficulty of these problems lies in how to make use this pseudoconvex condition.

As for the \mathbb{C}^{3} case, to prove the D'Angelo Conjecture, we made use of the Bloom Conjecture.

As for the \mathbb{C}^{3} case, to prove the D'Angelo Conjecture, we made use of the Bloom Conjecture.

Let L be a general tangent vector field, which does not achieve the maximum for the commutator type or the Levi form type.

As for the \mathbb{C}^{3} case, to prove the D'Angelo Conjecture, we made use of the Bloom Conjecture.

Let L be a general tangent vector field, which does not achieve the maximum for the commutator type or the Levi form type.

We constructed a new hypersurface M^{\prime}, and use the Bloom Conjecture to get $a^{(1)}\left(M^{\prime}, 0\right)=t(L, 0)$ and $a^{(1)}\left(M^{\prime}, 0\right)=c(L, 0)$.

As for the \mathbb{C}^{3} case, to prove the D'Angelo Conjecture, we made use of the Bloom Conjecture.

Let L be a general tangent vector field, which does not achieve the maximum for the commutator type or the Levi form type.

We constructed a new hypersurface M^{\prime}, and use the Bloom Conjecture to get $a^{(1)}\left(M^{\prime}, 0\right)=t(L, 0)$ and $a^{(1)}\left(M^{\prime}, 0\right)=c(L, 0)$.

For higher dimensional case $(n \geq 4)$, the Bloom Conjecture itself is still unknown.

The other approach to prove the D'Angelo Conjecture is to obtain a direct relation between $t(L, 0)$ and $c(L, 0)$.

The other approach to prove the D'Angelo Conjecture is to obtain a direct relation between $t(L, 0)$ and $c(L, 0)$.

For $L_{1}, \cdots, L_{k+1}=L$ or \bar{L} and any tangent vector field L^{\prime}, define

$$
\alpha_{L^{\prime}}=\eta\left(\left[T, L^{\prime}\right]\right),
$$

and

$$
\Gamma_{k+2}=\left[\cdots\left[[L, \bar{L}], L_{1}\right] \cdots, L_{k}\right] .
$$

If $L_{k}=L$, then

$$
\eta\left(\Gamma_{k+2}\right)=\eta\left(\left[\Gamma_{k+1}, L\right]\right)=\left(\alpha_{L}-L\right) \eta\left(\Gamma_{k+1}\right)-\lambda\left(L, \pi_{0,1} \Gamma_{k+1}\right)
$$

If $L_{k}=\bar{L}$, then

$$
\eta\left(\Gamma_{k+2}\right)=\eta\left(\left[\Gamma_{k+1}, \bar{L}\right]\right)=\left(\alpha_{\bar{L}}-\bar{L}\right) \eta\left(\Gamma_{k+1}\right)-\lambda\left(\pi_{1,0} \Gamma_{k+1}, \bar{L}\right)
$$

The crucial fact in \mathbb{C}^{2} is that there always exists a function f such that

$$
\begin{equation*}
\pi_{1,0} \Gamma_{k+1}=f L, \pi_{0,1} \Gamma_{k+1}=\overline{g L} \tag{*}
\end{equation*}
$$

If $L_{k}=L$, then

$$
\eta\left(\Gamma_{k+2}\right)=\eta\left(\left[\Gamma_{k+1}, L\right]\right)=\left(\alpha_{L}-L\right) \eta\left(\Gamma_{k+1}\right)-\lambda\left(L, \pi_{0,1} \Gamma_{k+1}\right)
$$

If $L_{k}=\bar{L}$, then

$$
\eta\left(\Gamma_{k+2}\right)=\eta\left(\left[\Gamma_{k+1}, \bar{L}\right]\right)=\left(\alpha_{\bar{L}}-\bar{L}\right) \eta\left(\Gamma_{k+1}\right)-\lambda\left(\pi_{1,0} \Gamma_{k+1}, \bar{L}\right)
$$

The crucial fact in \mathbb{C}^{2} is that there always exists a function f such that

$$
\begin{equation*}
\pi_{1,0} \Gamma_{k+1}=f L, \pi_{0,1} \Gamma_{k+1}=\overline{g L} \tag{*}
\end{equation*}
$$

Thus by induction,

$$
\eta\left(\Gamma_{k+2}\right)=\prod_{j=1}^{k}\left(\alpha_{L_{j}}-L_{j}\right) \lambda(L, \bar{L})+P_{k-1} \lambda(L, \bar{L})
$$

P_{j} is a differential operator of order at most j along L and \bar{L}.
$(*)$ is crucial for the \mathbb{C}^{2} case.
$(*)$ is crucial for the \mathbb{C}^{2} case.
It does not hold for higher dimensional case, which made the problem extremely difficult. For example,
$(*)$ is crucial for the \mathbb{C}^{2} case.
It does not hold for higher dimensional case, which made the problem extremely difficult. For example,
(1) Are $t(L, 0)$ and $c(L, 0)$ always even?
$(*)$ is crucial for the \mathbb{C}^{2} case.
It does not hold for higher dimensional case, which made the problem extremely difficult. For example,
(1) Are $t(L, 0)$ and $c(L, 0)$ always even?
(2) Is $v_{L}(f) \geq v_{L}(g)$ if $0 \leq f \leq g$?
$(*)$ is crucial for the \mathbb{C}^{2} case.
It does not hold for higher dimensional case, which made the problem extremely difficult. For example,
(1) Are $t(L, 0)$ and $c(L, 0)$ always even?
(2) Is $v_{L}(f) \geq v_{L}(g)$ if $0 \leq f \leq g$?

Here $V_{L}(f)$ is the vanishing order of f along L and \bar{L}.
$(*)$ is crucial for the \mathbb{C}^{2} case.
It does not hold for higher dimensional case, which made the problem extremely difficult. For example,
(1) Are $t(L, 0)$ and $c(L, 0)$ always even?
(2) Is $v_{L}(f) \geq v_{L}(g)$ if $0 \leq f \leq g$?

Here $V_{L}(f)$ is the vanishing order of f along L and \bar{L}.
The second question is trivial if L is a real tangent vector field.

Direct connection for higher dimensional case

Write

$$
\mathcal{L}^{m+2}=\left[\cdots\left[[L, \bar{L}], L_{1}\right] \cdots, L_{m}\right] \quad L_{j}=L \text { or } \bar{L}
$$

Then if $L_{m}=L$

$$
\eta\left(\mathcal{L}^{m+2}\right)=\left(\alpha_{L}-L\right) \eta\left(\mathcal{L}^{m+1}\right)-\lambda\left(L, \Pi_{0,1} \mathcal{L}^{m+1}\right)
$$

If if $L_{m}=\bar{L}$

$$
\eta\left(\mathcal{L}^{m+2}\right)=\left(\alpha_{\bar{L}}-\bar{L}\right) \eta\left(\mathcal{L}^{m+1}\right)+\lambda\left(\Pi_{1,0} \mathcal{L}^{m+1}, \bar{L}\right) .
$$

Direct connection for higher dimensional case

Write

$$
\mathcal{L}^{m+2}=\left[\cdots\left[[L, \bar{L}], L_{1}\right] \cdots, L_{m}\right] \quad L_{j}=L \text { or } \bar{L}
$$

Then if $L_{m}=L$

$$
\eta\left(\mathcal{L}^{m+2}\right)=\left(\alpha_{L}-L\right) \eta\left(\mathcal{L}^{m+1}\right)-\lambda\left(L, \Pi_{0,1} \mathcal{L}^{m+1}\right)
$$

If if $L_{m}=\bar{L}$

$$
\eta\left(\mathcal{L}^{m+2}\right)=\left(\alpha_{\bar{L}}-\bar{L}\right) \eta\left(\mathcal{L}^{m+1}\right)+\lambda\left(\Pi_{1,0} \mathcal{L}^{m+1}, \bar{L}\right) .
$$

Hence by induction, we obtain

$$
\eta\left(\mathcal{L}^{m+2}\right)=(-1)^{m} L_{m} \cdots L_{1} \lambda(L, \bar{L})+\mathcal{R}
$$

\mathcal{R} is extremely complicated, it is no longer lower times derivative of $\lambda(L, \bar{L})$ along L and \bar{L}.

Write $X=\Pi_{1,0}[L, \bar{L}]$. In the case of $t=4$ or $c=4$,
$\eta([[[L, \bar{L}], L], \bar{L}])+\eta([[[L, \bar{L}], \bar{L}], L])=(\bar{L} L+L \bar{L}) \lambda(L, \bar{L})+2 \lambda(X, \bar{X})$.

Write $X=\Pi_{1,0}[L, \bar{L}]$. In the case of $t=4$ or $c=4$,
$\eta([[[L, \bar{L}], L], \bar{L}])+\eta([[[L, \bar{L}], \bar{L}], L])=(\bar{L} L+L \bar{L}) \lambda(L, \bar{L})+2 \lambda(X, \bar{X})$.

The key point is that both $(\bar{L} L+L \bar{L}) \lambda(L, \bar{L})$ and the remainder term $\lambda(X, \bar{X})$ are positive, due to the pseudoconvexity.

Write $X=\Pi_{1,0}[L, \bar{L}]$. In the case of $t=4$ or $c=4$,

$$
\eta([[[L, \bar{L}], L], \bar{L}])+\eta([[[L, \bar{L}], \bar{L}], L])=(\bar{L} L+L \bar{L}) \lambda(L, \bar{L})+2 \lambda(X, \bar{X})
$$

The key point is that both $(\bar{L} L+L \bar{L}) \lambda(L, \bar{L})$ and the remainder term $\lambda(X, \bar{X})$ are positive, due to the pseudoconvexity.

It is not easy to achieve such a positive remainder term even for the degree 6 case.

Relation between these invariants

Example: Let $M \subset \mathbb{C}^{4}$ be a real hypersurface defined by

$$
r=-2 \operatorname{lm} w+\left|z_{1}\right|^{4}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}+\left|z_{1}\right|^{2}\left|z_{3}\right|^{2}+\left|z_{2}^{2}-z_{3}^{3}\right|^{4} .
$$

Relation between these invariants

Example: Let $M \subset \mathbb{C}^{4}$ be a real hypersurface defined by

$$
r=-2 \operatorname{lm} w+\left|z_{1}\right|^{4}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}+\left|z_{1}\right|^{2}\left|z_{3}\right|^{2}+\left|z_{2}^{2}-z_{3}^{3}\right|^{4} .
$$

The Caltin multitypes at 0 are $4,4,4$,
The Bloom regular contact types are $4,8,12$,
The D'Angelo finite types are $4,8,+\infty$.

Thank you for your attention!

